198 research outputs found

    T and CPT Symmetries in Entangled Neutral Meson Systems

    Get PDF
    Genuine tests of an asymmetry under T and/or CPT transformations imply the interchange between in-states and out-states. I explain a methodology to perform model-indepedent separate measurements of the three CP, T and CPT symmetry violations for transitions involving the decay of the neutral meson systems in B- and {\Phi}-factories. It makes use of the quantum-mechanical entanglement only, for which the individual state of each neutral meson is not defined before the decay of its orthogonal partner. The final proof of the independence of the three asymmetries is that no other theoretical ingredient is involved and that the event sample corresponding to each case is different from the other two. The experimental analysis for the measurements of these three asymmetries as function of the time interval {\Delta}t > 0 between the first and second decays is discussed, as well as the significance of the expected results. In particular, one may advance a first observation of true, direct, evidence of Time-Reserval-Violation in B-factories by many standard deviations from zero, without any reference to, and independent of, CP-Violation. In some quantum gravity framework the CPT-transformation is ill-defined, so there is a resulting loss of particle-antiparticle identity. This mechanism induces a breaking of the EPR correlation in the entanglement imposed by Bose statistics to the neutral meson system, the so-called {\omega}-effect. I present results and prospects for the {\omega}-parameter in the correlated neutral meson-antimeson states.Comment: Proc. DISCRETE 2010, Symposium on Prospects in the Physics of Discrete Symmetries, December 2010, Rom

    Gauge-Invariant Resummation Formalism and Unitarity in Non-Commutative QED

    Get PDF
    We re-examine the perturbative properties of four-dimensional non-commutative QED by extending the pinch techniques to the theta-deformed case. The explicit independence of the pinched gluon self-energy from gauge-fixing parameters, and the absence of unphysical thresholds in the resummed propagators permits a complete check of the optical theorem for the off-shell two-point function. The known anomalous (tachyonic) dispersion relations are recovered within this framework, as well as their improved version in the (softly broken) SUSY case. These applications should be considered as a first step in constructing gauge-invariant truncations of the Schwinger-Dyson equations in the non-commutative case. An interesting result of our formalism appears when considering the theory in two dimensions: we observe a finite gauge-invariant contribution to the photon mass because of a novel incarnation of IR/UV mixing, which survives the commutative limit when matter is present.Comment: 30 pages, 2 eps figure, uses axodraw. Citations adde

    Anomalies, Anomalous U(1)'s and generalized Chern-Simons terms

    Get PDF
    A detailed analysis of anomalous U(1)'s and their effective couplings is performed both in field theory and string theory. It is motivated by the possible relevance of such couplings in particle physics, as well as a potential signal distinguishing string theory from other UV options. The most general anomaly related effective action is analyzed and parameterized. It contains Stuckelberg, axionic and Chern-Simons-like couplings. It is shown that such couplings are generically non-trivial in orientifold string vacua and are not in general fixed by anomalies. A similar analysis in quantum field theories provides similar couplings. The trilinear gauge boson couplings are also calculated and their phenomenological relevance is advocated. We do not find qualitative differences between string and field theory in this sector.Comment: 52 pages, 2 eps figures, LaTeX, feynmf & youngtab packages (v2 - Minor corrections, references added

    Food security monitoring via mobile data collection and remote sensing: results from the Central African Republic

    Get PDF
    The Central African Republic is one of the world's most vulnerable countries, suffering from chronic poverty, violent conflicts and weak disaster resilience. In collaboration with Doctors without Borders/Midecins Sans Frontieres (MSF), this study presents a novel approach to collect information about socio-economic vulnerabilities related to malnutrition, access to resources and coping capacities. The first technical test was carried out in the North of the country (sub-prefecture Kabo) in May 2015. All activities were aimed at the investigation of technical feasibility, not at operational data collection, which requires a random sampling strategy. At the core of the study is an open-source Android application named SATIDA COLLECT that facilitates rapid and simple data collection. All assessments were carried out by local MSF staff after they had been trained for one day. Once a mobile network is available, all assessments can easily be uploaded to a database for further processing and trend analysis via MSF in-house software. On one hand, regularly updated food security assessments can complement traditional large-scale surveys, whose completion can take up to eight months. Ideally, this leads to a gain in time for disaster logistics. On the other hand, recording the location of every assessment via the smart phones. GPS receiver helps to analyze and display the coupling between drought risk and impacts over many years. Although the current situation in the Central African Republic is mostly related to violent conflict it is necessary to consider information about drought risk, because climatic shocks can further disrupt the already vulnerable system. SATIDA COLLECT can easily be adapted to local conditions or other applications, such as the evaluation of vaccination campaigns. Most importantly, it facilitates the standardized collection of information without pen and paper, as well as straightforward sharing of collected data with the MSF headquarters or other aid organizations

    BRS Symmetry in Connes' Non-commutative Geometry

    Get PDF
    We extend the BRS and anti-BRS symmetry to the two point space of Connes' non-commutative model building scheme. The constraint relations are derived and the quantum Lagrangian constructed. We find that the quantum Lagrangian can be written as a functional of the curvature for symmetric gauges with the BRS, anti-BRS auxiliary field finding a geometrical interepretation as the extension of the Higgs scalar.Comment: 28 pages, To appear in the Journal of Physics

    BGWM as Second Constituent of Complex Matrix Model

    Full text link
    Earlier we explained that partition functions of various matrix models can be constructed from that of the cubic Kontsevich model, which, therefore, becomes a basic elementary building block in "M-theory" of matrix models. However, the less topical complex matrix model appeared to be an exception: its decomposition involved not only the Kontsevich tau-function but also another constituent, which we now identify as the Brezin-Gross-Witten (BGW) partition function. The BGW tau-function can be represented either as a generating function of all unitary-matrix integrals or as a Kontsevich-Penner model with potential 1/X (instead of X^3 in the cubic Kontsevich model).Comment: 42 page

    Inhibition of FOXO3 Tumor Suppressor Function by βTrCP1 through Ubiquitin-Mediated Degradation in a Tumor Mouse Model

    Get PDF
    The ubiquitin-proteasome system is the primary proteolysis machine for controlling protein stability of the majority of regulatory proteins including those that are critical for cancer development. The forkhead box transcription factor FOXO3 plays a key role in regulating tumor suppression; however, the control of FOXO3 protein stability remains to be established. It is crucial to elucidate the molecular mechanisms underlying the ubiquitin-mediated degradation of FOXO3 tumor suppressor.Here we show that betaTrCP1 oncogenic ubiquitin E3-ligase interacts with FOXO3 and induces its ubiquitin-dependent degradation in an IkappaB kinase-beta phosphorylation dependent manner. Silencing betaTrCP1 augments FOXO3 protein level, resulting in promoting cellular apoptosis in cancer cells. In animal models, increasing FOXO3 protein level by silencing betaTrCP1 suppresses tumorigenesis, whereas decreasing FOXO3 by over-expressing betaTrCP1 promotes tumorigenesis and tumor growth in vivo.This is a unique demonstration that the betaTrCP1-mediated FOXO3 degradation plays a crucial role in tumorigenesis. These findings significantly contribute to understanding of the control of FOXO3 stability in cancer cells and may provide opportunities for developing innovative anticancer therapeutic modalities

    Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Get PDF
    Extent: 15p.Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.King-Hwa Ling, Peter J Brautigan, Christopher N Hahn, Tasman Daish, John R Rayner, Pike-See Cheah, Joy M Raison, Sandra Piltz Jeffrey R Mann, Deidre M Mattiske, Paul Q Thomas, David L Adelson and Hamish S Scot
    corecore