199 research outputs found

    Measurement of gas phase characteristics using amonofibre optical probe in a three-phase flow

    Get PDF
    The study of gas–liquid–solid systems structure requires reliable measurement tools. In this paper, preliminary results on the potential use of a monofibre optical probe to investigate such flow are presented. This probe, manufactured at LEGI, allows the simultaneous measurement of the gas phase residence time and gas phase velocity. This specificity makes this probe more interesting than classical single tip probes (which measure only the gas residence time) or double tip probes (which are more intrusive). Although extensively used in two-phase gas–liquid, this probe was never used in gas–liquid–solid systems. First, the probe signal response is studied for three-phase flow conditions in the presence of solids. Results show that for soft solids, the probe tips can be contaminated when the probe pierces the solid. The signal processing procedure was modified accordingly to take into account these events. Second, the probe results are validated by comparing global results (global void fraction, gas flowrate) deduced from profile measurements with measurements performed by independent means. Lastly, void fraction profiles and interfacial area are studied more in detail. Depending on the solid loading, these profiles exhibit different behaviours. These features are associated to characteristics of the flow such as the transition from an homogeneous regime to an heterogenous regime, and are consistent with global observation performed by independent means. This demonstrates the ability of the probe to connect local information to the global behaviour and structure of the flow.Fundação para a Ciência e a Tecnologia (FCT

    KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis.

    Get PDF
    Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. We show that this coiled phenotype is associated with specific mechanical properties of the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the papilla cell wall

    Customization of an optical probe device and validation of a signal processing procedure to study gas-liquid-solid flows. Application to a three-phase internal-loop Gas-lift Bioreactor

    Get PDF
    The study of local hydrodynamic properties of three-phase bioreactors in biotechnology processes is of great importance, mainly because of the complex interaction between bioreactor and microorganisms. However, classical techniques used for measuring local hydrodynamic properties such as single needle probes are mainly limited to two-phase flows. In this work it was developed and validated a new system, based on the customization of an optical probe initially designed in LEGI. The necessity of a new system was due to the agglomeration of the solid-phase (spent grains which are used as the micro-organisms carrier for the targeted application) around the optical tip, which influences the measurements. This new system allows for the measurement of the main local gas-phase properties in a complex gas-liquid-solid mixture. The new system was first validated for air-water system in an internal loop gas-lift reactor and then applied to a spent grains-air-water mixture at low solid load in an internal gas lift reactor. In addition, experiments using complementary techniques (as high speed camera and PIV) were performed that allowed for the validation of the new system and the explanation of possible physical mechanisms that are underlying on this multiphase system. The system developed has the potential for improvement and use in several biotechnology applications.The authors gratefully acknowledge the financial support from FCT (Fundacao para a Ciencia e Tecnologia, SFRH/BD/37082/2007 and SFRH/BPD/45637/2008)

    Front. Plant. Sci.

    Get PDF
    Plasmodesmata (PD) pores connect neighbouring plant cells and enable direct transport across the cell wall. Understanding the molecular composition of these structures is essential to address their formation and later dynamic regulation. Here we provide a biochemical characterisation of the cell wall co-purified with primary PD of Arabidopsis thaliana cell cultures. To achieve this result we combined subcellular fractionation, polysaccharide analyses and enzymatic fingerprinting approaches. Relative to the rest of the cell wall, specific patterns were observed in the PD fraction. Most xyloglucans, although possibly not abundant as a group, were fucosylated. Homogalacturonans displayed short methylated stretches while rhamnogalacturonan I species were remarkably abundant. Ful l rhamnogalacturonan II forms, highly methyl-acetylated, were also present. We additionally showed that these domains, compared to the broad wall, are less affected by wall modifying activities during a time interval of days. Overall, the protocol and the data presented here open new opportunities for the study of wall polysaccharides associated with PD.Ecole Universitaire de Recherche de Sciences des Plantes de Paris-SaclayThe function of membrane tethering in plant intercellular communicatio

    SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance

    Get PDF
    Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens. Cytokinin and auxin are two major hormonal regulators of plant growth. Here the authors identify SYAC1, a gene that is synergistically activated by the two hormones being applied together, and show that it is required for normal growth while negatively impacting pathogen resistance

    Ovatoxin-a and Palytoxin Accumulation in Seafood in Relation to Ostreopsis cf. ovata Blooms on the French Mediterranean Coast

    Get PDF
    Dinoflagellates of the genus Ostreopsis are known to cause (often fatal) food poisoning in tropical coastal areas following the accumulation of palytoxin (PLTX) and/or its analogues (PLTX group) in crabs, sea urchins or fish. Ostreopsis spp. occurrence is presently increasing in the northern to north western Mediterranean Sea (Italy, Spain, Greece and France), probably in response to climate change. In France, Ostreopsis. cf. ovata has been associated with toxic events during summer 2006, at Morgiret, off the coast of Marseille, and a specific monitoring has been designed and implemented since 2007. Results from 2008 and 2009 showed that there is a real danger of human poisoning, as these demonstrated bioaccumulation of the PLTX group (PLTX and ovatoxin-a) in both filter-feeding bivalve molluscs (mussels) and herbivorous echinoderms (sea urchins). The total content accumulated in urchins reached 450 µg PLTX eq/kg total flesh (summer 2008). In mussels, the maximum was 230 µg eq PLTX/kg (summer 2009) compared with a maximum of 360 µg found in sea urchins during the same period at the same site. This publication brings together scientific knowledge obtained about the summer development of Ostreopsis spp. in France during 2007, 2008 and 2009
    corecore