133 research outputs found

    Charge-flow structures as polymeric early-warning fire alarm devices

    Get PDF
    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires

    A gridless multilayer router for standard cell circuits using CTM cells

    Full text link

    Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs

    Full text link
    Sixteen female cross-bred (Large White &times; Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2&times;2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10&middot;5 and 5&middot;4 % for low- and high-fat diets respectively, P=0&middot;015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of &szlig;-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11&middot;0 and 7&middot;1 % for low- and high-fat diets respectively, P=0&middot;008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0&middot;24 and P=0&middot;30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.<br /

    Ontogeny and thermogenic role for sternal fat in female sheep

    Get PDF
    Brown adipose tissue acting through a unique uncoupling protein (UCP1) has a critical role in preventing hypothermia in new-born sheep but is then considered to rapidly disappear during postnatal life. The extent to which the anatomical location of fat influences postnatal development and thermogenic function, particularly following feeding, in adulthood, are not known and were both examined in our study. Changes in gene expression of functionally important pathways (i.e. thermogenesis, development, adipogenesis and metabolism) were compared between sternal and retroperitoneal fat depots together with a representative skeletal muscle over the first month of postnatal life, coincident with the loss of brown fat and accumulation of white fat. In adult sheep, implanted temperature probes were used to characterise the thermogenic response of fat and muscle to feeding and the effects of reduced or increased adiposity. UCP1 was more abundant within sternal than retroperitoneal fat and was only retained in the sternal depot of adults. Distinct differences in the abundance of gene pathway markers were apparent between tissues, with sternal fat exhibiting some similarities with muscle that were not apparent in the retroperitoneal depot. In adults, the post-prandial rise in temperature was greater and more prolonged in sternal than retroperitoneal fat and muscle, a difference that was maintained with altered adiposity. In conclusion, sternal adipose tissue retains UCP1 into adulthood when it shows a greater thermogenic response to feeding than muscle and retroperitoneal fat. Sternal fat may be more amenable to targeted interventions that promote thermogenesis in large mammals

    Responses of North American and New Zealand strains of Holstein–Friesian dairy cattle to homeostatic challenges during early and mid-lactation

    Get PDF
    Peer-reviewedThis study investigated the physiological basis of differences in nutrient partitioning between the North American (NA) and New Zealand (NZ) strains of Holstein Friesian cattle by determining the responses to homeostatic challenges at two stages of lactation. Glucose tolerance tests, epinephrine challenges, and insulin challenges were carried out on consecutive days commencing on day 32 ± 0.48 (mean ± s.e.m) of lactation (T1) and again commencing on day 137 ± 2.44 of lactation (T2). The insulin and non-esterified fatty acid (NEFA) responses to glucose infusion did not differ between the strains. The NZ strain had a greater clearance rate (CR) of glucose (2.04 vs. 1.66 % / min) and tended to have a shorter (34.4 vs. 41.1 min) glucose half-life (t½) at T2 when infused with glucose. The NA cows had a greater glucose response to epinephrine infusion across T1 and T2, and tended to have a greater insulin response to epinephrine infusion. Plasma NEFA concentration declined to similar nadir concentrations for both strains at T1 in response to insulin, though from a higher basal concentration in NA cows, resulting in a greater (-2.29 vs. -1.38) NEFA area under the response curve (AUC) for NA cows. Glucose response to insulin varied with time, tending to be greater for NA at T1, but tending to be lower for NA at T2. The results indicated that NA cows had a greater glycogenolytic response to epinephrine, but both strains had similar lipolytic responses. The results also imply that higher basal circulating NEFA concentrations in the NA strain in early lactation were not due to diminished adipose tissue responsiveness to insulin. There were indications that glucose clearance rate was greater in NZ cows in mid-lactation, and may form the basis of increased body tissue accretion during mid- to late-lactation in this strain

    Efficient and Accurate Gate Sizing with Piecewise Convex Delay Models

    No full text
    We present an efficient and accurate gate sizing tool that employs a novel piecewise convex delay model, handling both rise and fall delays, for static CMOS gates. The delay model is used in a new version of a gate-sizing tool called Forge, which not only exhibits optimality, but also efficiently produces the area versus delay tradeoff curve for a block in one step. Forge includes a realistic delay propagation scheme that combines arrival times and slew-rates. Forge is 6.4X faster than a commercial transistor sizing tool, while achieving better delay targets and uses 28 % less transistor area for specific delay targets, on average

    Charge-flow structures as polymeric early-warning fire-alarm devices.

    No full text
    Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Includes bibliographical references.M.S

    Placement and Global Routing of Standard Cell Integrated Circuits

    No full text

    A Timing-Driven Partitioning System for Multiple FPGAs

    No full text
    Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS) pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the MCNC benchmarks satisfying the critical path constraints and achieving a significant reduction in the longest path delay. An average reduction of 17% in the longest path delay was achieved at the cost of 5% in total wire length
    • …
    corecore