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Précis 6 

We demonstrate in a large animal that brown adipose tissue mitochondrial uncoupling protein 7 

is highly abundant in sternal adipose tissue and could contribute to the thermogenic response 8 

to feeding. 9 
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Abstract  1 

Brown adipose tissue acting through a unique uncoupling protein (UCP1) has a critical role in 2 

preventing hypothermia in new-born sheep but is then considered to rapidly disappear during 3 

postnatal life. The extent to which the anatomical location of fat influences postnatal 4 

development and thermogenic function, particularly following feeding, in adulthood, are not 5 

known and were both examined in our study. Changes in gene expression of functionally 6 

important pathways (i.e. thermogenesis, development, adipogenesis and metabolism) were 7 

compared between sternal and retroperitoneal fat depots together with a representative 8 

skeletal muscle over the first month of postnatal life, coincident with the loss of brown fat 9 

and accumulation of white fat. In adult sheep, implanted temperature probes were used to 10 

characterise the thermogenic response of fat and muscle to feeding and the effects of reduced 11 

or increased adiposity. UCP1 was more abundant within sternal than retroperitoneal fat and 12 

was only retained in the sternal depot of adults. Distinct differences in the abundance of gene 13 

pathway markers were apparent between tissues, with sternal fat exhibiting some similarities 14 

with muscle that were not apparent in the retroperitoneal depot. In adults, the post-prandial 15 

rise in temperature was greater and more prolonged in sternal than retroperitoneal fat and 16 

muscle, a difference that was maintained with altered adiposity. In conclusion, sternal 17 

adipose tissue retains UCP1 into adulthood when it shows a greater thermogenic response to 18 

feeding than muscle and retroperitoneal fat. Sternal fat may be more amenable to targeted 19 

interventions that promote thermogenesis in large mammals. 20 



4 
 
 

 

 

 

 

 

Introduction 1 

In the majority of large mammals studied to date birth is a critical period for the rapid 2 

recruitment of non-shivering thermogenesis in brown adipose tissue (BAT) and this coincides 3 

with maximal appearance of uncoupling protein (UCP1) (1,2). This is followed by a 4 

transformation of fat from a brown to white appearance although the rate and magnitude of 5 

this process could vary between depots (3). For example, in humans the supraclavicular (or 6 

neck) depot retains UCP1 into adulthood (4), whereas the peri-adrenal depot does not (5). 7 

Consequently, in adults the supraclavicular depot has the capacity to exhibit a significant 8 

thermogenic response to both cold exposure (6) and diet (7). The extent to which the 9 

retention of UCP1 through the life cycle, and thus associated thermogenic potential, are 10 

determined by a fat depots early development and/or anatomical location are currently 11 

unknown.  12 

 13 

Studies in rodents initially suggested that brown and white adipocytes arise from different 14 

lineages, and that brown adipocytes may originate from the same precursor as skeletal muscle 15 

(8). This relationship now appears to be more complex and depot specific as white adipocytes 16 

can have diverse and mixed origins (9,10) potentially overlapping with brown adipocytes 17 

(11). Additional populations of adipocytes have also been identified, being beige or ‘brite’ 18 

(i.e. ‘brown-in-white’), which are characterised as being small populations of UCP1-19 

expressing cells surrounded by large numbers of white adipocytes (12,13). The thermogenic 20 
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relevance of these cells remains to be established, as their UCP1 content is only 10% of that 1 

of classical BAT (14). To date, the majority of studies investigating beige fat have been 2 

confined to adult rodents in which “almost everything” examined to date is able to ‘brown’ 3 

white adipose tissue (15). Furthermore, a diverse range of molecular markers for beige 4 

adipocytes have been suggested, but their applicability across species (16), as well as the 5 

optimal conditions in which these classifications are defined (17), are now being questioned. 6 

 7 

Our study therefore had two aims, the first was to compare the gene expression profiles for 8 

the primary thermogenic, metabolic and functional markers of brown, beige and white 9 

adipose tissue in retroperitoneal (the most abundant depot in the fetal sheep and a “classic” 10 

adipose tissue depot (18)), sternal (or neck) fat, and in hind limb muscle, a representative 11 

skeletal muscle. Sheep, like many large mammals do not possess interscapular BAT (19) that 12 

is present in rodents. The current comparison, undertaken in young sheep, spanned the period 13 

from birth to one month of postnatal life, examining three important time points that in 14 

retroperitoneal fat are coincident with the peak abundance of UCP1 after birth (i.e. 1 day of 15 

age), the age at which UCP1 has declined to basal amounts prior to the onset of rapid growth 16 

(i.e. 7 days of age) and subsequent loss of UCP1 (i.e. 28 days of age (1)). We also conducted 17 

detailed molecular analyses to establish whether each depot could have a different 18 

developmental origin and if adipose tissue in the sternal depot is more similar to skeletal 19 

muscle than “classical” (i.e. retroperitoneal) adipose tissue. The second aim was to examine 20 
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whether the sternal depot was able to respond to the thermogenic stimulus of feeding in 1 

adulthood (20) and if this was comparable to responses in skeletal muscle rather than those in 2 

a “classic” adipose tissue. In addition, we examined whether diet-induced obesity or low 3 

body weight modulated this response and thus whether sternal fat could be a potential target 4 

for promoting thermogenesis.  5 

 6 

  7 
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Methods 1 

Animal experimentation 2 

All animal work was approved by the relevant Animal Ethics Committees at The University 3 

of Nottingham or Monash University. In order to avoid any confounding effects of sex and/or 4 

a disproportionate increase in muscle mass following overfeeding (as seen in males (21))  5 

only females were studied. 6 

 7 

Study 1. The effects of postnatal age on sternal adipose tissue development.  8 

Ten triplet bearing sheep of mixed breed that all gave birth naturally to appropriately grown 9 

offspring at term (over a 4 week period) were entered into the study. Triplets were chosen for 10 

the study as this meant there would be no confounding maternal influences between each 11 

sampling date. One lamb from each mother was therefore randomly selected at either 1, 7 or 12 

28 days of age, blood sampled from the jugular vein and then euthanized by injection of 13 

sodium pentobarbital (0.5 ml/kg). The sternal and retroperitoneal adipose tissues depots were 14 

dissected and weighed, together with a representative sample from the hind limb muscle 15 

(vastus lateralis). Samples were immediately placed in liquid nitrogen and then stored at 16 

−80°C until analysed. 17 

 18 

 19 
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Study 2. The effects of altered body weight and fat mass on the temperature response to 1 

feeding in sternal adipose tissue. 2 

Manipulation of adult body weight. Fifteen adult female Corriedale sheep aged between 3-3 

5 years, of normal body weight (~55kg), were all ovariectomized (in order to avoid any 4 

confounding effects of the reproductive cycle on tissue temperature) and then randomly 5 

divided into three different body weight groups. Five animals were made lean (32.5±1.5 kg) 6 

by feeding a restricted diet of ~500 g of lucerne chaff per day and five became obese 7 

(79.9±3.7 kg) after receiving a supplemented diet of lucerne hay ad libitum (ad lib) and ~300 8 

g daily supplement of high energy food (i.e. oats and lupin grain) (22,23). The remaining five 9 

“control” animals (52.6±1.1 kg) were maintained on pasture. Differential body weights were 10 

then maintained for 1 year prior to experimentation. To assess the temperature response to 11 

feeding, the diets were standardised across all groups and the high energy supplementation of 12 

the obese group stopped. Visceral adiposity was determined at the time of euthanasia (Lean: 13 

0.04±0.01 kg; Control: 1.58±0.18 kg; Obese: 4.11±0.19 kg). 14 

 15 

Profiling post-prandial changes in temperature and metabolites 16 

For tissue-specific temperature recordings, customised Dataloggers with 10 cm or 20 cm 17 

(SubCue, Calgary, Canada) download leads were inserted into either the skeletal muscle of 18 

the hind limb (vastus lateralis), sternal (midline) and retroperitoneal fat and set to record 19 

temperature at 15 minute intervals as previously published (20,24).  After surgery, the 20 
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animals were housed indoors to enable precisely timed ‘meal’ feeding and exposed to natural 1 

variations in photoperiod and ambient temperature. To entrain post-prandial thermogenesis, 2 

animals were placed on a temporal program-feeding regime, in which they had access to food 3 

at set ‘meal’ times between 11.00 h and 16.00 h each day (20,24,25). Animals were 4 

“program-fed” for 2 weeks prior to the onset of experimentation. To characterise changes in 5 

plasma metabolites and insulin with feeding, blood samples (6 ml) were collected into 6 

heparinised tubes at 30 min intervals between 10.00 h and 16.00 h. The samples were 7 

centrifuged to obtain plasma, which was stored at −20°C until assayed.  8 

 9 

Food intake was recorded after offering the obese and standard animals 2 kg of lucerne chaff 10 

and monitoring any refusals, whilst the lean animals received and consumed 500 g of chaff 11 

per day. Food intake, once corrected to body weight, was similar in the obese and lean 12 

animals, whereas the control group ate slightly more (P<0.01) than the other two groups (data 13 

not shown). 14 

 15 

Temperature data were downloaded and the diurnal thermogenic pattern and the post-prandial 16 

response were then analysed in each tissue. After 3 weeks of program feeding, all animals 17 

were euthanized as described above, between 08.30-10.30 h. Representative fat and muscle 18 

samples were collected and stored as described above for Study 1. At this time it was 19 
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confirmed that each temperature probe was still located within the same anatomical position 1 

as at surgery. 2 

 3 

Laboratory analysis 4 

Gene expression: Total RNA was extracted and, following confirmation of RNA integrity, 5 

gene expression was determined using real time PCR (1). The specificity of each ovine 6 

primer was confirmed by classical PCR with ovine cDNA from suitable tissue samples, 7 

negative controls and ovine genomic DNA and analysing the products by agarose gel 8 

electrophoresis. The primers were only used if there was a clear single band on the gel 9 

corresponding to the expected amplicon size, negative control lanes were clear, and any 10 

products from amplification of genomic DNA could be easily distinguished from the target. 11 

The PCR products of the selected primers were analysed using high-sensitivity Sanger 12 

dideoxy sequencing, and the returned sequences were verified by alignment with the 13 

predicted on-line sequence to ensure that they were specific to the intended target. A 14 

summary of the primers used are given in Table 1. The relative amount of mRNA was 15 

calculated relative to the geometric mean of the most stable reference genes as determined by 16 

geNorm and/or NormFinder analysis. For the postnatal tissues, housekeeping genes included 17 

IPO8, KDM2B, RPLP0 and TBP and cyclophilin, β actin, β-2-microglobulin and malate 18 

dehydrogenase 1 were used for the adult tissue. 19 

 20 
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 1 

Histology: Tissue sections were prepared as previously published (1) and stained using 2 

haematoxylin and eosin and for UCP1. The number of adipocytes was counted in randomly 3 

positioned grids using a counting frame area of 62 500µm2. The Schaffer method was used 4 

and a total of approximately 120 adipocytes were examined with the coefficient of variation 5 

<2 %. Adipocyte size was measured using the nucleator method (26,27), and cell area 6 

calculated by using orthogonal lines originating from the midpoint of the cell, which was 7 

taken as the centre of the lipid droplet within complete adipocytes. For UCP1 8 

immunohistochemistry, adjacent sections were collected. Sections were deparaffinised, and 9 

endogenous peroxide activity blocked with 0.3 % hydrogen peroxide in methanol. Sections 10 

were then washed and blocking serum (normal goat serum in 0.1 M phosphate-buffered 11 

saline) added, re-washed and then incubated with primary antibody (1:100 rabbit anti-UCP1) 12 

for 24 h at room temperature. Slides were then washed and incubated for 1 hour with 13 

secondary antibody (1:200 biotinylated anti-rabbit antibody, Antibodies Australia, 14 

Melbourne). Immunostaining was revealed using 3,3′-diaminobenzidine colour reagent. Rat 15 

brown adipose tissue was used as a positive control (primary antibody 1:1000) and staining 16 

without primary antibody was used to determine staining specificity. 17 

 18 

Mitochondrial content and immunoblotting: The relative abundance of UCP1 and total 19 

mitochondrial protein content were determined in the postnatal samples as previously 20 
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described (28). In the adult samples the relative abundance of UCP1, UCP3, SERCA1 and 1 

SERCA2a were determined using antibodies as previously published (20,29,30) and 2 

summarised in Table 2. All data was corrected against the density of staining for total protein. 3 

Each antibody gave a signal at the correct molecular weight (see Supplementary Figure 1) 4 

and the specificity of binding for each anti-body was confirmed using non-immune rabbit 5 

serum.  6 

 7 

Plasma metabolite and hormone analysis: Plasma glucose and lactate were analysed using 8 

an auto-analyser (YSI, Inc., Yellow Springs, OH), NEFA enzymatically (31). Plasma insulin 9 

(32) and irisin (33) by ELISA (Kit no. EK-067-29; Phoenix Pharmaceuticals, Inc., 330 Beach 10 

Road, Burlingame, CA 94010, USA) in single assays. 11 

 12 

Statistical analyses 13 

Differences in gene expression and protein abundance between depots with age and/or 14 

different body weights were analysed using Kruskal-Wallis non-parametric tests with 15 

Bonferroni correction for multiple analyses. In Study 2, longitudinal data for temperature and 16 

plasma analysis were analysed by repeated measures ANOVA. Differences in the 17 

temperature response to feeding, and in adipocyte size, were analysed by one-way ANOVA 18 

using Fishers least significant differences for post-hoc analyses.   19 
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Results 1 

Changes in UCP1 and gene expression profile between depots during early development 2 

As expected, the abundance of the UCP1 gene and a key regulator of BAT function, DIO2 3 

were highest in both fat depots examined at 1 day of age and then declined (Figure 1). This 4 

adaptation in gene expression occurred as white adipose tissue mass increased substantially, 5 

with growth up to 28 days of age being greater in terms of relative body weight in the 6 

retroperitoneal depot (sternal 4.7+0.5; retroperitoneal 9.6+1.2 g/kg; P<0.05). At 1 day of age 7 

the total mitochondrial protein content was greater in sternal than retroperitoneal fat, which 8 

resulted in the total amount of UCP1 protein, being higher in the sternal depot (sternal 9 

1.4+0.5; retroperitoneal 0.3+0.1 arbitrary units (au) per depot; P<0.05). The rate of decline in 10 

UCP1 was, however greater between 1 and 7 days of age in the sternal depot (i.e. 7 days: 11 

sternal 0.7+0.1; retroperitoneal 0.5+0.1 au per depot). UCP1 protein was undetectable in 12 

muscle at any time point.  13 

 14 

Very low amounts of UCP1 and DIO2 mRNA were detected in skeletal muscle (Figure 1). 15 

As each fat depot lost UCP1, there was a parallel decrease in gene expression for PDK4, (that 16 

is present in murine BAT (34)), which was also apparent in muscle. In contrast, the gene that 17 

encodes for irisin, i.e. FNDC5, was highly abundant in all three tissues examined, with a clear 18 

peak in muscle at 7 days of age. Whilst there were no changes in FNDC5 expression with age 19 

in retroperitoneal adipose tissue, in sternal fat it decreased. No change in plasma irisin 20 
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concentration was observed with age (7 days: 117+7; 28 days 129+11 ng/ml). The lipid 1 

droplet protein CIDEA exhibited high transcript expression in both fat depots and did not 2 

change with age, whereas expression was very low in muscle. RIP140 was equally abundant 3 

in both fat and muscle, and while it showed a clear rise at 28 days in both fat depots, there 4 

were no significant age-related changes in muscle.  5 

 6 

In order to establish a clearer overview of the differences in relative gene expression of a 7 

range of markers previously considered to be indicative of brown, beige, and white adipose 8 

tissue or skeletal muscle, a more exhaustive analysis was undertaken on the samples obtained 9 

at 7 days of age (Figure 2). This demonstrated that other BAT related-genes (e.g. Eva1) were 10 

highly expressed in both fat depots, as were those genes primarily involved in either lipid 11 

metabolism (i.e. FABP4) or adipogenesis (i.e. PPARγ, CEBPα and β), whereas ADIRF was 12 

more abundant in sternal than retroperitoneal fat. None of these genes were present in muscle. 13 

Some other genes considered to potentially regulate adipose development, such as HOXC8 14 

and HOXC9, and the “white fat marker” gene TCF21 were also highly expressed in 15 

retroperitoneal adipose tissue, but not in muscle or, more surprisingly, in sternal adipose 16 

tissue. Messenger RNA for En-1 was highly abundant in sternal fat, but not in the other two 17 

tissues. In contrast, SHOX2 mRNA was abundant in sternal fat and muscle, but was barely 18 

detectable in the retroperitoneal depot. Specific muscle marker genes CPT1b and Tbx15, 19 

which have been reported to be expressed during the differentiation or induction of BAT 20 
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(35,36), were highly expressed in muscle, but minimally expressed in fat. Finally, ACSM5 1 

mRNA was more abundant in muscle than in retroperitoneal fat, but hardly detectable in 2 

sternal fat. 3 

 4 

To further understand the development of sternal fat the expression of additional genes were 5 

examined (Table 3), and divided into four categories: developmental genes previously 6 

considered to be markers of brown or beige fat; and those which regulate thermogenesis, 7 

metabolism or adipogenesis. For thermogenic genes, we observed a reduction in PRLR and 8 

PGC1α expression between 7 and 28 days, whereas ATF2 expression increased. The 9 

expression of the beige/white marker gene HOXC9 and the “classical” BAT marker gene 10 

LHX8 both rose substantially at each age, whereas that of the BAT fate-determining gene 11 

PRDM16 showed a small decrease by 28 days, whilst the beige marker gene SHOX2 was 12 

unchanged. Surprisingly, changes in the expression profiles of adipogenic genes varied. The 13 

mRNA abundance of PPARγ and NR3C1 both increased, whereas that of CEBPα transiently 14 

increased at 7 days of age and that of SREBF1 declined. A majority of other metabolic genes 15 

also showed increased expression with age, i.e. adiponectin, leptin and GPR120. However, 16 

mRNA abundance for FABP4 and the INSR were unchanged. 17 

 18 

 19 

 20 
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Differences in tissue temperature and metabolites in response to feeding and altered fat 1 

mass in adults 2 

In adult sheep, the temperature of retroperitoneal fat was consistently higher than in sternal 3 

fat and skeletal muscle (Figure 3), which might reflect its deep-body location. Nevertheless, 4 

retroperitoneal fat and skeletal muscle displayed comparable temperature responses to 5 

feeding. The greatest feeding-induced temperature rise was in sternal fat (Figure 4). There 6 

was no effect of increased fat mass on the temperature of the three tissues studied (Figures 3-7 

4).  Whereas low body weight/adiposity was associated with reduced temperature of both 8 

adipose tissue and skeletal muscle, this effect was less pronounced in retroperitoneal fat 9 

(Figure 3). Plasma glucose and insulin were lower in the lean animals, but there was little 10 

effect of altered adiposity on plasma NEFA and lactate (Figure 5). 11 

 12 

Differences in gene profile with altered fat mass in adults 13 

The abundance of UCP1 mRNA was very low in all adult tissues and UCP1 was only 14 

consistently detectable by immunohistochemistry in sternal fat (Figure 6). UCP3 was highly 15 

abundant in skeletal muscle, but was very low in sternal and retroperitoneal fat; being 16 

expressed 100-fold more in muscle than fat (i.e. skeletal muscle 5+1; adipose tissue 17 

0.05+0.1). Gene expression for UCP3 was increased in sternal adipose tissue in lean 18 

compared to obese animals (Lean 18+4; Obese 0.3+0.2 au; P<0.05), whereas protein 19 

abundance was reduced (Table 4). In contrast, neither UCP1 mRNA nor protein, were altered 20 
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by changes in adiposity in either fat depot (data not shown). UCP2 mRNA was lower in 1 

sternal and retroperitoneal fat of lean compared to control animals (e.g. retroperitoneal:  Lean 2 

1.0+0.3; Control 3.3+0.5 au; P<0.05). There were also no effects of body weight on UCP3, 3 

RyR1 or SERCA2a in skeletal muscle. Expression of SERCA1 mRNA was lower in skeletal 4 

muscle of lean animals, but protein concentrations were again unaffected by fat mass. Finally, 5 

as expected, adipocyte cell size was influenced by altered body weight and adiposity. In 6 

retroperitoneal fat, adipocyte size changed in proportion to increased body weight. On the 7 

other hand, adipocyte size was decreased in sternal fat of lean animals but there was no effect 8 

of obesity on adipocyte size in this depot (Figure 6). 9 

  10 
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Discussion 1 

We have shown that during postnatal development in sheep, the sternal and retroperitoneal fat 2 

depots exhibit contrasting gene expression profiles that could be indicative of divergent 3 

prenatal origins. These differences potentially contribute to the enhanced temperature 4 

responses seen in sternal compared with retroperitoneal fat and skeletal muscle following 5 

feeding in adulthood. Although the abundance of UCP1 within the sternal depot declines with 6 

increased fat mass both during postnatal and adult life, it does not appear to compromise the 7 

ability of this depot to increase its temperature in response to feeding in adulthood. 8 

Furthermore, adipocyte cell size in the sternal fat depot appears unresponsive to increased 9 

adiposity, suggesting that it is likely to serve a function other than storing surplus lipid during 10 

nutrient excess and obesity. 11 

 12 

Divergent patterns of development between fat and muscle in early life 13 

It is becoming apparent that identifying functional markers in BAT and/or beige adipocytes is 14 

a complex process that is influenced by depot and whether in vivo or in vitro methodologies 15 

are used (17,37,38). As we have shown previously in ovine retroperitoneal fat, there are at 16 

least three distinct phases of postnatal development (1). The major functionally related 17 

changes are seen between 1 and 28 days of postnatal age, coincident with the loss of UCP1 18 

and the transition of brown to white adipose tissue (1). In the present study, we confirm that 19 

this critical stage of development extends to both sternal fat and muscle and is coincident 20 
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with rapid growth and functional changes within each tissue (39,40). These findings are in 1 

accord with that recently described within epicardial fat during development of humans that 2 

have undergone heart surgery (41). Consideration of each gene or group of genes examined, 3 

the accepted function of each, and known developmental ontogeny in other species is given 4 

below, thereby providing new insights into the pronounced differences in the molecular 5 

signatures of fat and muscle. 6 

 7 

The most notable characteristic of sternal, compared with both retroperitoneal fat and muscle, 8 

was the very high abundance of En-1 mRNA. Lineage tracing studies in mice indicate cells 9 

showing early expression of En-1 during development give rise to dermis and epaxial muscle, 10 

but not other muscles, and interscapular BAT “bundles” (42), which is in accord with our 11 

findings postnatally.  Anatomical location during early development is determined along 12 

three axes: anterior-posterior, proximal-distal, and dorsal-ventral (43), but the primary 13 

regulators remain to be fully elucidated, with a variety of gene families such as Wnt (44,45),  14 

HOX (46) and Pax playing roles. HOX genes are important regulators of development 15 

(47,48), for which expression of specific combinations of the paralogous HOX gene sets 16 

specify a particular anatomical location along the anterior-posterior axis. Our data show that 17 

HOXC8 and HOXC9 are highly expressed in the more posteriorly located retroperitoneal 18 

depot, but not in the more anterior sternal depot, and that this pattern of gene expression 19 
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persists to 28 days. In mice, HOXC8 and HOXC9 gene expression is higher in retroperitoneal 1 

than in interscapular adipose tissue (49).  2 

 3 

TCF21 was originally proposed as a marker for white pre-adipocytes (50), but its gene 4 

expression differs between fat depots (51) (52). Therefore, our finding that TCF21 mRNA 5 

was only abundant in retroperitoneal fat support the hypothesis that tissue-specific patterns of 6 

TCF21 gene expression are indicative of fundamental differences between depots that are 7 

dependent on anatomical location. Further indirect evidence of depot-specific rates of 8 

development comes from examining SHOX2.  Its pattern of gene expression was opposite to 9 

the HOXC genes measured, being expressed in both muscle and sternal fat, which is 10 

anteriorly located to the retroperitoneal depot, where there is little, if any, detectable 11 

expression. SHOX2 is able to interact with CEBPα to modulate ADRB3 and, by extension, 12 

regulate lipolysis in adipose tissue (53). Additionally, in mice, ablation of SHOX2 promotes 13 

lipolysis (53). The low expression of this gene within retroperitoneal adipose tissue could 14 

therefore be indicative of a more rapid mobilisation of NEFA, as well as capacity for greater 15 

growth through adulthood compared with sternal fat. Differences in metabolic capacity, with 16 

respect to medium chain fatty acid synthesis between tissues, could also explain the much 17 

higher mRNA abundance of ACSM5 in retroperitoneal compared with sternal adipose tissue. 18 

ACSM5 is also considered to be a characteristic of white fat rather than BAT (34), and its 19 

paucity reflects the retention of UCP1 within sternal fat. Our finding of greater gene 20 
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expression for ACSM5 within muscle contrasts with findings in adult rodents (54), and could 1 

be indicative of the significant changes seen within muscle during early postnatal 2 

development. In sheep, this is coincident with the recruitment of shivering thermogenesis 3 

(40), that could be accompanied with the increased utilisation of intramuscular fat as 4 

suggested in pigs (55). Gene expression for FNDC5 also peaked at 7 days in muscle, 5 

coincident with maximal recruitment of shivering thermogenesis as UCP1 declined (40). 6 

There was no parallel change in plasma concentrations of irisin at this stage. This was not 7 

entirely unexpected given the current controversy regarding the measurement of irisin (56) 8 

and its potential functionality or existence (57). 9 

 10 

Some changes in gene expression with age were similar in both muscle and fat depots (e.g. 11 

PDK4) that could reflect the overall decline in basal metabolic rate (40), loss of UCP1 and 12 

pronounced fat deposition up to one month of age (39). At the same time, there is a transition 13 

from lipid to glucose metabolism (58) that would be facilitated by a decline in PDK4 activity 14 

(59), whilst the increase in leptin, adiponectin, RIP140 and GPR120 gene expression are 15 

indicative of increased adiposity. In adults, however, fat mass and plasma adiponectin and its 16 

gene expression are normally negatively correlated (60). A different type of relationship 17 

during early life, coincident with the rapid growth of fat, is not unexpected, as has been seen 18 

for plasma leptin and the loss of its positive correlation with fat mass (61). At the same time, 19 

both LHX8 and ATF2 gene expression increased with age and fat mass, which was not 20 
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expected given their putative “BAT identity marker roles”, as described by others in ovine 1 

retroperitoneal adipose tissue with development (62). As suggested by rodent studies, both 2 

ATF2 and GRP120 may, therefore, have a greater role in stimulating adipogenesis rather than 3 

thermogenesis (63,64), whilst raised RIP140 would facilitate the loss of UCP1 (65). In 4 

summary, sternal fat development shares some characteristics with skeletal muscle that may 5 

also impact on the retention of UCP1 and its thermogenic capacity in adulthood. 6 

 7 

Functional consequences of UCP1 in sternal fat 8 

The contribution of BAT to diet-induced thermogenesis in rodents remains contentious (66), 9 

although it does appear to have a role in both young sheep (58), children (67) and adults (7).  10 

There is good evidence from developmental studies in both rodents and young sheep that 11 

muscle is recruited to generate heat when UCP1 is absent (68) and/or nonshivering 12 

thermogenesis is compromised (40). In adult sheep temperature excursions in skeletal muscle 13 

in response to feeding and central infusion of leptin are consistent with increased 14 

thermogenesis (24,29). The basal temperature of muscle also appears to be more sensitive to 15 

total fat mass than that of either fat depot studied.  This could reflect both its anatomical 16 

position and/or the impact of an increase in the surrounding fat and its insulating properties. It 17 

should also be noted that in large mammals, such as sheep, the thermogenic response to 18 

feeding is an entrained response (20) whereas, in rodents, there is an influence of circadian 19 

rhythm (69). Furthermore, rodents are normally active in the dark phase and the sensitivity of 20 
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UCP1 to further stimulation is modulated by these diurnal activity patterns (70).  These are 1 

dependent, in part, on both light exposure and activity of the sympathetic nervous system 2 

(71). A range of other factors can have a critical role in determining the thermogenic role of 3 

muscle in rodents, including sarcolipin (72) and UCP3 (73). In adult sheep gene expression of 4 

UCP3 is increased in skeletal muscle after central infusion of leptin and is associated with 5 

increased heat production and a switch towards uncoupled respiration in isolated 6 

mitochondria (24). Additionally, increased expression of RyR1 mRNA and SERCA2a protein 7 

in skeletal muscle coincides with dietary induced thermogenesis (29).  We, however, found 8 

no difference in protein abundance for either SERCA1 or 2a or UCP3 in muscle of animals of 9 

differing body weights.  10 

 11 

In contrast to the acute effects of feeding, prolonged food restriction caused a marked 12 

decrease in temperature in skeletal muscle and sternal adipose tissue, an effect attenuated in 13 

the retroperitoneal fat. Consistent with the decreased temperature in muscle, UCP3 gene 14 

expression declined markedly in skeletal muscle of lean animals, but there was no associated 15 

change in protein. On the other hand, altered adiposity had no effect on UCP1 gene or protein 16 

abundance in sternal fat, but UCP3 mRNA was reduced in the lean group. Due to the much 17 

larger mass of muscle than BAT, its contribution to metabolic homeostasis is appreciably 18 

greater in sheep and humans (74), especially when plasma glucose concentrations are raised. 19 

Notably, glucose concentrations were considerably lower in the lean group in the current 20 
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study. The reduced temperature in both skeletal muscle and sternal adipose tissue of lean 1 

animals is indicative of homeostatic reduction in thermogenesis in response to chronic food 2 

restriction and weight loss. This may be a mechanism to reduce energy expenditure in an 3 

effort to maintain body weight in states of negative energy balance and/or in the lean 4 

condition and may be mediated by lower thyroid hormone secretion (75). 5 

 6 

In summary, sternal and retroperitoneal fat have distinct developmental profiles which are 7 

different to that seen in muscle. The different developmental profiles are not only associated 8 

with early adipose growth but also on thermogenesis in these tissues later in life. The extent 9 

to which sternal fat expansion, and particularly UCP1 abundance, can be modulated in early 10 

life may inform new strategies to manipulate energy balance, especially following feeding or 11 

in response to chronic food restriction during adulthood. 12 

  13 
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Figure Legends 1 

Figure 1. Summary of the changes in gene expression for putative markers of brown, beige 2 

or white adipose tissue or skeletal muscle in the sternal and retroperitoneal fat depots and 3 

hind limb muscle over the first 28 days of life in young sheep. Values are means with their 4 

standard errors, n=4-6 per age group and significant differences between age groups are 5 

indicated by * P<0.05.  6 

 7 

Figure 2. Summary heat map comparison of qPCR gene expression between sternal and 8 

retroperitoneal adipose tissue and skeletal muscle from six individual sheep sampled at 7 9 

days of age. All normalised data were made relative to the highest expressing sample and are 10 

given in arbitrary units (au) between 0-1. Each column contains data from an individual 11 

animal for the three tissues examined and each row contains data for a specific gene. Red 12 

squares represent the highest expression (1) and blue squares the lowest (0). 13 

 14 

Figure 3. Summary of the effect of altered body weight and fat mass on changes in the 15 

temperature of sternal and retroperitoneal (RP) adipose tissue and skeletal muscle as 16 

measured continuously over a 24 h period. Values are means with standard errors of the mean 17 

and n=4-5 per age group. Grey box indicates the time at which food was available. Obese 18 

animals are shown in white squares, control in black triangles and lean in black circles. ** 19 

P<0.01 lean compared to obese and control, a P<0.05 lean compared to obese. 20 
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Figure 4. Summary of the effect of altered body weight and fat mass on changes in the post-1 

prandial rise in tissue temperature of sternal and retroperitoneal (RP) adipose tissue and 2 

skeletal muscle as measured after feeding. This was calculated as the amplitude of the 3 

temperature change that occurred within the feeding window (11.00 h – 16.00 h).  Values are 4 

means with standard errors of the mean and n=4-5 per group and significant differences 5 

between depot for each body weight group of sheep indicted by * P<0.05; ** P<0.01 sternal 6 

compared to muscle and RP fat. 7 

  8 

Figure 5. Summary of the effect of increased body weight and fat mass on changes in plasma 9 

metabolites and insulin with feeding (represented by shaded region). Values are means with 10 

their standard errors and n=4-5 per group and significant differences between depot for each 11 

body weight group of sheep indicted by ** P<0.01 *** P<0.001 lean compared to control and 12 

obese. NEFA, non-esterified fatty acids. 13 

 14 

Figure 6. The effects of body weight on adipocyte size and histological appearance in sternal 15 

and retroperitoneal (RP) fat of adult sheep. Panel A: Mean adipocyte cell size with sternal 16 

represented by closed boxes and RP by open boxes. Panels B-G: representative 17 

photomicrographs of haematoxylin and eosin stained sections; Panel H: example of 18 

uncoupling protein (UCP1) immunostaining from sternal adipose tissue. Rat brown adipose 19 

tissue was used as the positive control (Panel I) and staining specificity was determined with 20 
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rat brown adipose tissue in the absence of primary antibody (Panel J). Open bars: sternal fat; 1 

closed bars: retroperitoneal fat. Values are means with their standard errors and n=4-5 per 2 

group and significant differences between depot for each body weight group of sheep 3 

indicted by *P<0.05 compared to sternal fat, aP<0.01 compared to obese animals (within a fat 4 

depot).  Scale bar represents 50µm. 5 
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Table 1. Summary of specific ovine sequence of forward and reverse oligonucleotides 

primers used for real time PCR. 

Gene 
Accession 
number 

Forward primer Reverse primer 
Amplicon 

length (bp) 

ACSM5 XM_015469322.1 CCACCATATGATGTGCAGGT TGTCTTCTCAGGGTTGTCCA 138 

ADIPOQ NM_174742.2 ATCAAACTCTGGAACCTCCTATCTAC TTGCATTGCAGGCTCAAG 232 

ADIRF NM_001114513.2 CCACAGAAGCAGGGCAGA AAACCCGAGAAAGCCTCA 100 

ATF2 XM_004004570.1 TCCCACTTGTTCGACCAGTCA TTGACAGTATCGCCGTTGGT 151 

C/EBPα XM_004015623.1 CTGGAGCTGACCAGTGACA GGGCAGCTGACGGAAGAT 96 

C/EBPβ NM_176788.1 ACGACTTCCTCTCCGACCTC CCCAGACTCACGTAGCCGTA 85 

CIDEA NM_001083449.1 AAGGCCACCATGTACGAGAT GGTGCCCATGTGGATAAGACA 138 

CPT1b NM_001034349.2 TGATCACGTATCGCCGTAAA GAGCACATCTGTGTCCTTCC 137 

DIO2 NM_001010992.3 AGCCGCTCCAAGTCCACTC TTCCACTGGTGTCACCTCCT 175 

En-1 XM_003581845.4 AACCCGGCCATACTGCTAAT TTCTTCTTCAGCTTCCTGGTG 152 

Eva-1 XM_004016067.3 GGAATTTCCGTCCTCGAGAT AGGATGGAGACGTCATACCG 139 

FABP4 NM_174314.2 TGAAATCACTCCAGATGACAGG TGGTGGTTGATTTTCCATCC 98 

GPR120 XM_002698388.1 CCTGGGACGTGTCATTTGCTA CTGGTGGCTCTCCGAGTAGG 140 

HOXC8 XM_002704245.5 TGTAAATCCTCCGCCAACAC TGATACCGGCTGTAAGTTTGC 140 

HOXC9 XM_002704244.2 GACCTGGACCCCAGCAAC GCTCGGTGAGGTTGAGAAC 175 

INSR XM_002688832.3 CTGCACCATCATCAACGGAA CGTAACTTCCGGAAGAAGGA 162 

LEP NM_173928.2 CCAGGATGACACCAAAACC TGGACAAACTCAGGAGAGG 140 

LHX8 XM_004003563.1 AGAGCACGCCACAAGAAACA AGGGCTGGAGTCCAAGAGTT 199 

NR3C1 NM_001206634.1 ACTGCCCCAAGTGAAAACAGA ATGAACAGAAATGGCAGACATTTTATT 151 

PGC1α NM_177945.3 GATTGGCGTCATTCAGGAGC CCAGAGCAGCACACTCGAT 84 

PPARγ NM_181024.2 GACCCGATGGTTGCAGATTA TGAGGGAGTTGGAAGGCTCT 145 

Table Click here to download Table Table 1 primers.docx 
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PPARγ NM_181024.2 GACCCGATGGTTGCAGATTA TGAGGGAGTTGGAAGGCTCT 145 

PRDM16 XM_003583245.1 TGGCAGCTGGCTCAAGTACA CGGAACGTGGGCTCCTCATC 198 

PRLR NM_174155.3 CTCCACCCACCATGACTGAT CAGCGAATCTGCACAAGGTA 169 

RIP140 XM_002684642.2 CGAGGACTTGAAACCAGAGC TCTTAGGGACCATGCAAAGG 179 

RyR1 NM_001206777 GGGATATGGGTGACACGAC TCTCAGCATCAGCTTTCTCC 158 

Serca 1a XM_004020863.3 GCTGCTGTGGGCAATAAGAT GCCAGTACCCCACTCTTTGA 150 

Serca 2a XM_012097784.2 CAGGTGTACCCACATTCGAG TTCCCGAATGACAGACATGA 85 

SHOX2 NM_001205527.1 CGCCTTTATGCGTGAAGAAC TTGGCTGGCAGCTCCTAT 142 

SREBF1 XM_004013336.1 AGGGGGACAAGGAGTTCTCA CTCCGGCCATATCCGAACAG 72 

Tbx15 NM_001079775.1 AATGGACATTGTACCTGTGGAC TGACCACCTGTCTCATCCAA 158 

TCF21 XM_014480981.1 ATCCTGGCCAACGACAAGTA TCAGGTCACTCTCGGGTTTC 94 

UCP1 XM_003587124.1 GGGCTTTGGAAAGGGACTACT CAGGGCACATCGTCTGCTAAT 128 

UCP2 NM_001033611 AAGGCCCACCTAATGACAGA CCCAGGGCAGAGTTCATGT 128 

UCP3 NM_001308581.1 ACCTGCTCACCGACAACTTC CATATACCGCGTCTTCACCA 107 

β-2-microglobulin AY549962 CCAGAAGATGGAAAGCCAAA CAGGTCTGACTGCTCCGATT 117 

β-Actin U39357 GCAAAGACCTCTACGCCAAC TGATCTTGATCTTCATCGTGCT 120 

Cyclophilin JX534530 GCATACAGGTCCTGGCATCT CATGCCCTCTTTCACTTTGC 136 

IPO8 NM_001206120.1 GCCCTTGCTCTTCAGTCATT GTGCAACAGCTCCTGCATAA 93 

KDM2B XM_004017579.1 CGGTCCTACCTCACTCAGGA CCGTCTATGCTGGGCTTTCT 74 

Malate dehydrogenase 1 AF233351 CGTTGCAGAGCTGAAGGATT GGTGCACTGAGAGATCAAGG 100 

RPLP0 NM_001012682.1 CAACCCTGAAGTGCTTGACAT AGGCAGATGGATCAGCCA 227 

TBP NM_001075742.1 CTTGGACTTCAAGATTCAGAACA CCAGGAAATAACTCTGGCTCA 120 

YWHAZ NM_174814.2 CCGGACACAGAACATCCAGTC TCAGCTCCTTGCTCAGTTACAG 125 

Those listed at the bottom of Table that are shaded are the house-keeping genes. 

 



Table 3. Summary of the changes in gene expression of putative markers of a) thermogenic, b) 

developmental, c) adipogenic and d) metabolic pathways in sternal adipose tissue over the 

first month of postnatal life in sheep.  

 
 

Values are mean copy number with their standard errors, n=5-6 per group 

Significant differences with age indicated by similar superscripts: a, b p<0.05; c, d p<0.01; e p 

<0.001 

Animal age 1 day 7 days 28 days 

          
Thermogenesis 

         
PRLR 400 ± 80 c 390 ± 50 e 100 ± 10 c, e 

PGC1α 11 270 ± 1 970 c 10 800 ± 1 540 d 2 220 ± 650 c, d 

ATF2 4 770 ± 280 a 4 300 ± 180 e 7 090 ± 510 a, e 

CIDEA 304 ± 56 400 ± 30 310 ± 70 

          
Development 

         
HOXC9 65 ± 10 c 110 ± 10 190 ± 30 c 

LHX8 10 ± 1 a, b 120 ± 40 a 210 ± 70 b 

PRDM16 120 ± 40 a 80 ± 10 60 ± 10 a 

SHOX2 1 190 ± 420 990 ± 90 1 420 ± 210 

          
Adipogenesis 

         
PPARγ 21 810 ± 4 340 c 34 670 ± 1 890 46 480 ± 6 110 c 

C/EBPα 12 300 ± 3 070 c 27 130 ± 1 920 c, d 12 820 ± 1 180 d 

NR3C1 17 820 ± 2 590 a 15 870 ± 680 e 26 450 ± 910 a, e 

SREBF1 8 850 ± 2 860 c 4 440 ± 270 a 3 350 ± 260 a, c 

          
Metabolism 

         
LEP 110 ± 40 a, e 1 970 ± 470 a 6 100 ± 1 200 e 

ADIPOQ (x103) 130 ± 30 a, c 370 ± 30 a 530  ± 80 c 

FABP4 (x103) 1 450 ± 390 1 730  ± 110 2 090  ± 300 

GPR120 10 ± 5 e 60 ± 20 c 560 ± 150 c, e 

INSR 5 150 ± 1 960 7 240 ± 860 5 290 ± 580 
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Table 4. Summary of the effects of altered adult body weight on the protein abundance of 

uncoupling protein (UCP) 1 and 3 in fat and skeletal muscle and of potential thermogenic 

proteins (i.e. sarcoplasmic reticulum calcium-transporting ATPases (SERCA)) in muscle. 

 

 

All results expressed in arbitrary units, relative to controls and corrected against the density 

of staining for total protein. 

Significant differences between body weight groups indicated by different superscripts a vs b 

P<0.05; a vs c P<0.01 

 Lean Control Obese 

Skeletal muscle  

UCP3 0.63±0.30 1.0±0.26 1.00±0.25 

SERCA1 1.26±0.16 1.0±0.14 1.06±0.17 

SERCA2a 1.18±0.11 1.0±0.08 1.06±0.10 

Sternal adipose tissue 

UCP1 1.22±0.16 1.0±0.18 0.99±0.20 

UCP3 0.68±0.17a 1.0±0.08 1.35±0.10c 

Retroperitoneal adipose tissue 

UCP1 1.05±0.16 1.0±0.09 1.04±0.10 

UCP3 0.73±0.08 1.0±0.16 1.02±0.10 

Table Click here to download Table Table 4 Protein.docx 
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Peptide/

Protein 

Target

Antigen 

Sequence (If 

Known) Name of antibody Manufacturer, Catalog No., or Name of SourceSpecies Raised in Monoclonal or Polyclonal

UCP1 anti-UCP1 Antibodies Australia           Rabbit

UCP3 RALMKVQVLRESPF     Ab34677 Abcam Rabbit

SERCA1 CaF2-5D2 Developmental Studies  Hybridoma Bank    Mouse

SERCA2a CaS/C1 Developmental Studies  Hybridoma Bank    Mouse

Antibody Table



Species Raised in Monoclonal or PolyclonalDilution used

0.111111

0.736111

0.736111

3.513889


