Endocrinology

Ontogeny and thermogenic role for sternal fat in female sheep --Manuscript Draft--

Manuscript Number:	en.2017-00081R1
Full Title:	Ontogeny and thermogenic role for sternal fat in female sheep
Article Type:	Research Article
Section/Category:	Energy Balance - Obesity - Metabolism
Corresponding Author:	Michael E Symonds, PhD The University of Nottingham Nottingham, UNITED KINGDOM
Additional Information:	
Question	Response
MANUSCRIPT HISTORY:	No
Has the manuscript been submitted or reviewed before in an Endocrine Society journal?	
INVITED SUBMISSION:	No
Is this an invited submission?	
SPECIAL REQUESTS:	We are submitting this paper to be considered as part of your special issue on "Metabolism in endocrine health and disease"
Enter specific comments or requests to the editors here. Enter "none" if there aren't any.	
EDITOR-IN-CHIEF SELECTION:	Dr. Andrea Gore
Select an Editor-in-Chief to handle your manuscript: <u>Dr. Andrea Gore</u> or <u>Dr.</u> <u>Stephen Hammes</u> .	
WELLCOME TRUST / RESEARCH COUNCILS UK:	None of the above

In accordance with Wellcome Trust and Research Councils UK policies, the Endocrine Society will deposit to PubMed Central the final published article. For the full policy, see the Instructions to Authors. Indicate if the paper you are submitting has received funding from any of the organizations listed below:		
STEROID HORMONE MEASUREMENT:	Not applicable to my manuscript.	
I have read and understood the <u>Steroid</u> <u>Hormone Measurement</u> policy and describe my submission as follows:		
CELL LINE AUTHENTICATION:	Not applicable to my manuscript.	
I have read and understood the <u>Cell Line</u> <u>Authentication</u> policy and describe my submission as follows:		
PRECIS: Please submit a brief description of your paper that will appear on the Table of Contents along with the title, should your paper be accepted. The description should be NO LONGER THAN 200 CHARACTERS and should serve to buttress the content of the title by simply stating what was done and what was concluded.	We demonstrate in a large animal that bro protein is highly abundant in sternal adipos thermogenic response to feeding.	wn adipose tissue mitochondrial uncoupling se tissue and could contribute to the
Funding Information:	National Health and Medical Research Council (10005935)	Belinda Henry
Requested Editor:		
Author Comments:	Disclosure Statement: The authors have n	othing to disclose

1	Ontogeny and thermogenic role for sternal fat in female sheep.
2	
3	Belinda A. Henry ¹ , Mark Pope, Mark Birtwistle, Rachael Loughnan ¹ , Reham Alagal, John-
4	Paul Fuller-Jackson ¹ , Viv Perry ² , Helen Budge, Iain J. Clarke ³ and Michael E Symonds ⁴
5	
6	Early Life Research Unit, Academic Division of Child Health, Obstetrics & Gynaecology,
7	and ⁴ Nottingham Digestive Disease Centre and Biomedical Research Unit, School of
8	Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH,
9	United Kingdom and ¹ Metabolic Disease and Obesity Program, Monash Biomedicine
10	Discovery Institute and Department of Physiology, Monash University, Wellington Road,
11	Clayton, Victoria 3800, Australia, ² School of Veterinary Medicine and Science, The
12	University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom and
13	³ Neuroscience Program, Monash Biomedicine Discovery Institute and Department of
14	Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
15	
16	Short title: Ontogeny and thermogenic role for sternal fat
17	Keywords: Brown adipose tissue, development, thermogenesis
18	
19	Corresponding author and to whom reprints should be requested:
20	Professor Michael E. Symonds
21	Academic Division of Child Health Obstetrics & Gynaecology, School of Medicine, Queen's
ZZ	we use the conversity of noting nam, Notting nam NG/ 20H, United Kingdom

- 1 Phone: +44 1158230625 Fax: +44 1158230626.
- 2 Email: <u>michael.symonds@nottingham.ac.uk</u>
- 3
- 4 **Disclosure Statement:** The authors have nothing to disclose
- 5
- 6 **Précis**
- 7 We demonstrate in a large animal that brown adipose tissue mitochondrial uncoupling protein
- 8 is highly abundant in sternal adipose tissue and could contribute to the thermogenic response
- 9 to feeding.
- 10

1 Abstract

2 Brown adipose tissue acting through a unique uncoupling protein (UCP1) has a critical role in 3 preventing hypothermia in new-born sheep but is then considered to rapidly disappear during 4 postnatal life. The extent to which the anatomical location of fat influences postnatal development and thermogenic function, particularly following feeding, in adulthood, are not 5 known and were both examined in our study. Changes in gene expression of functionally 6 7 important pathways (i.e. thermogenesis, development, adipogenesis and metabolism) were 8 compared between sternal and retroperitoneal fat depots together with a representative 9 skeletal muscle over the first month of postnatal life, coincident with the loss of brown fat and accumulation of white fat. In adult sheep, implanted temperature probes were used to 10 11 characterise the thermogenic response of fat and muscle to feeding and the effects of reduced 12 or increased adiposity. UCP1 was more abundant within sternal than retroperitoneal fat and was only retained in the sternal depot of adults. Distinct differences in the abundance of gene 13 pathway markers were apparent between tissues, with sternal fat exhibiting some similarities 14 15 with muscle that were not apparent in the retroperitoneal depot. In adults, the post-prandial rise in temperature was greater and more prolonged in sternal than retroperitoneal fat and 16 muscle, a difference that was maintained with altered adiposity. In conclusion, sternal 17 adipose tissue retains UCP1 into adulthood when it shows a greater thermogenic response to 18 19 feeding than muscle and retroperitoneal fat. Sternal fat may be more amenable to targeted 20 interventions that promote thermogenesis in large mammals.

1 Introduction

In the majority of large mammals studied to date birth is a critical period for the rapid 2 recruitment of non-shivering thermogenesis in brown adipose tissue (BAT) and this coincides 3 with maximal appearance of uncoupling protein (UCP1) (1,2). This is followed by a 4 5 transformation of fat from a brown to white appearance although the rate and magnitude of this process could vary between depots (3). For example, in humans the supraclavicular (or 6 neck) depot retains UCP1 into adulthood (4), whereas the peri-adrenal depot does not (5). 7 8 Consequently, in adults the supraclavicular depot has the capacity to exhibit a significant thermogenic response to both cold exposure (6) and diet (7). The extent to which the 9 retention of UCP1 through the life cycle, and thus associated thermogenic potential, are 10 determined by a fat depots early development and/or anatomical location are currently 11 12 unknown.

13

Studies in rodents initially suggested that brown and white adipocytes arise from different lineages, and that brown adipocytes may originate from the same precursor as skeletal muscle (8). This relationship now appears to be more complex and depot specific as white adipocytes can have diverse and mixed origins (9,10) potentially overlapping with brown adipocytes (11). Additional populations of adipocytes have also been identified, being beige or 'brite' (i.e. 'brown-in-white'), which are characterised as being small populations of UCP1expressing cells surrounded by large numbers of white adipocytes (12,13). The thermogenic

relevance of these cells remains to be established, as their UCP1 content is only 10% of that
of classical BAT (14). To date, the majority of studies investigating beige fat have been
confined to adult rodents in which "almost everything" examined to date is able to 'brown'
white adipose tissue (15). Furthermore, a diverse range of molecular markers for beige
adipocytes have been suggested, but their applicability across species (16), as well as the
optimal conditions in which these classifications are defined (17), are now being questioned.

8 Our study therefore had two aims, the first was to compare the gene expression profiles for 9 the primary thermogenic, metabolic and functional markers of brown, beige and white adipose tissue in retroperitoneal (the most abundant depot in the fetal sheep and a "classic" 10 11 adipose tissue depot (18)), sternal (or neck) fat, and in hind limb muscle, a representative 12 skeletal muscle. Sheep, like many large mammals do not possess interscapular BAT (19) that is present in rodents. The current comparison, undertaken in young sheep, spanned the period 13 from birth to one month of postnatal life, examining three important time points that in 14 15 retroperitoneal fat are coincident with the peak abundance of UCP1 after birth (i.e. 1 day of age), the age at which UCP1 has declined to basal amounts prior to the onset of rapid growth 16 17 (i.e. 7 days of age) and subsequent loss of UCP1 (i.e. 28 days of age (1)). We also conducted detailed molecular analyses to establish whether each depot could have a different 18 19 developmental origin and if adipose tissue in the sternal depot is more similar to skeletal 20 muscle than "classical" (i.e. retroperitoneal) adipose tissue. The second aim was to examine

whether the sternal depot was able to respond to the thermogenic stimulus of feeding in
adulthood (20) and if this was comparable to responses in skeletal muscle rather than those in
a "classic" adipose tissue. In addition, we examined whether diet-induced obesity or low
body weight modulated this response and thus whether sternal fat could be a potential target
for promoting thermogenesis.

1 Methods

2 Animal experimentation

All animal work was approved by the relevant Animal Ethics Committees at The University
of Nottingham or Monash University. In order to avoid any confounding effects of sex and/or
a disproportionate increase in muscle mass following overfeeding (as seen in males (21))
only females were studied.

7

8 Study 1. The effects of postnatal age on sternal adipose tissue development.

9 Ten triplet bearing sheep of mixed breed that all gave birth naturally to appropriately grown offspring at term (over a 4 week period) were entered into the study. Triplets were chosen for 10 11 the study as this meant there would be no confounding maternal influences between each 12 sampling date. One lamb from each mother was therefore randomly selected at either 1, 7 or 28 days of age, blood sampled from the jugular vein and then euthanized by injection of 13 sodium pentobarbital (0.5 ml/kg). The sternal and retroperitoneal adipose tissues depots were 14 15 dissected and weighed, together with a representative sample from the hind limb muscle (vastus lateralis). Samples were immediately placed in liquid nitrogen and then stored at 16 17 -80°C until analysed.

7

18

Study 2. The effects of altered body weight and fat mass on the temperature response to
 feeding in sternal adipose tissue.

3 Manipulation of adult body weight. Fifteen adult female Corriedale sheep aged between 3-4 5 years, of normal body weight (~55kg), were all ovariectomized (in order to avoid any confounding effects of the reproductive cycle on tissue temperature) and then randomly 5 6 divided into three different body weight groups. Five animals were made lean $(32.5\pm1.5 \text{ kg})$ by feeding a restricted diet of ~500 g of lucerne chaff per day and five became obese 7 8 (79.9±3.7 kg) after receiving a supplemented diet of lucerne hay *ad libitum* (*ad lib*) and ~300 9 g daily supplement of high energy food (i.e. oats and lupin grain) (22,23). The remaining five "control" animals (52.6±1.1 kg) were maintained on pasture. Differential body weights were 10 11 then maintained for 1 year prior to experimentation. To assess the temperature response to 12 feeding, the diets were standardised across all groups and the high energy supplementation of the obese group stopped. Visceral adiposity was determined at the time of euthanasia (Lean: 13 0.04±0.01 kg; Control: 1.58±0.18 kg; Obese: 4.11±0.19 kg). 14

15

16 **Profiling post-prandial changes in temperature and metabolites**

For tissue-specific temperature recordings, customised Dataloggers with 10 cm or 20 cm
(SubCue, Calgary, Canada) download leads were inserted into either the skeletal muscle of
the hind limb (vastus lateralis), sternal (midline) and retroperitoneal fat and set to record
temperature at 15 minute intervals as previously published (20,24). After surgery, the

1	animals were housed indoors to enable precisely timed 'meal' feeding and exposed to natural
2	variations in photoperiod and ambient temperature. To entrain post-prandial thermogenesis,
3	animals were placed on a temporal program-feeding regime, in which they had access to food
4	at set 'meal' times between 11.00 h and 16.00 h each day (20,24,25). Animals were
5	"program-fed" for 2 weeks prior to the onset of experimentation. To characterise changes in
6	plasma metabolites and insulin with feeding, blood samples (6 ml) were collected into
7	heparinised tubes at 30 min intervals between 10.00 h and 16.00 h. The samples were
8	centrifuged to obtain plasma, which was stored at -20° C until assayed.
9	
10	Food intake was recorded after offering the obese and standard animals 2 kg of lucerne chaff
11	and monitoring any refusals, whilst the lean animals received and consumed 500 g of chaff
12	per day. Food intake, once corrected to body weight, was similar in the obese and lean

animals, whereas the control group ate slightly more (P<0.01) than the other two groups (data 13 not shown). 14

15

Temperature data were downloaded and the diurnal thermogenic pattern and the post-prandial 16 response were then analysed in each tissue. After 3 weeks of program feeding, all animals 17 18 were euthanized as described above, between 08.30-10.30 h. Representative fat and muscle samples were collected and stored as described above for Study 1. At this time it was 19

- confirmed that each temperature probe was still located within the same anatomical position
 as at surgery.
- 3

4 Laboratory analysis

- 5 Gene expression: Total RNA was extracted and, following confirmation of RNA integrity,
- 6 gene expression was determined using real time PCR (1). The specificity of each ovine
- 7 primer was confirmed by classical PCR with ovine cDNA from suitable tissue samples,
- 8 negative controls and ovine genomic DNA and analysing the products by agarose gel
- 9 electrophoresis. The primers were only used if there was a clear single band on the gel
- 10 corresponding to the expected amplicon size, negative control lanes were clear, and any
- 11 products from amplification of genomic DNA could be easily distinguished from the target.
- 12 The PCR products of the selected primers were analysed using high-sensitivity Sanger
- 13 dideoxy sequencing, and the returned sequences were verified by alignment with the
- 14 predicted on-line sequence to ensure that they were specific to the intended target. A
- summary of the primers used are given in Table 1. The relative amount of mRNA was
- 16 calculated relative to the geometric mean of the most stable reference genes as determined by
- 17 geNorm and/or NormFinder analysis. For the postnatal tissues, housekeeping genes included
- 18 *IPO8*, *KDM2B*, *RPLP0* and *TBP* and cyclophilin, β actin, β -2-microglobulin and malate
- 19 dehydrogenase 1 were used for the adult tissue.
- 20

л
_
_

2	Histology: Tissue sections were prepared as previously published (1) and stained using
3	haematoxylin and eosin and for UCP1. The number of adipocytes was counted in randomly
4	positioned grids using a counting frame area of $62500 \mu m^2$. The Schaffer method was used
5	and a total of approximately 120 adipocytes were examined with the coefficient of variation
6	<2 %. Adipocyte size was measured using the nucleator method (26,27), and cell area
7	calculated by using orthogonal lines originating from the midpoint of the cell, which was
8	taken as the centre of the lipid droplet within complete adipocytes. For UCP1
9	immunohistochemistry, adjacent sections were collected. Sections were deparaffinised, and
10	endogenous peroxide activity blocked with 0.3 % hydrogen peroxide in methanol. Sections
11	were then washed and blocking serum (normal goat serum in 0.1 M phosphate-buffered
12	saline) added, re-washed and then incubated with primary antibody (1:100 rabbit anti-UCP1)
13	for 24 h at room temperature. Slides were then washed and incubated for 1 hour with
14	secondary antibody (1:200 biotinylated anti-rabbit antibody, Antibodies Australia,
15	Melbourne). Immunostaining was revealed using 3,3'-diaminobenzidine colour reagent. Rat
16	brown adipose tissue was used as a positive control (primary antibody 1:1000) and staining
17	without primary antibody was used to determine staining specificity.
18	
19	Mitochondrial content and immunoblotting: The relative abundance of UCP1 and total

20 mitochondrial protein content were determined in the postnatal samples as previously

1	described (28). In the adult samples the relative abundance of UCP1, UCP3, SERCA1 and
2	SERCA2a were determined using antibodies as previously published (20,29,30) and
3	summarised in Table 2. All data was corrected against the density of staining for total protein.
4	Each antibody gave a signal at the correct molecular weight (see Supplementary Figure 1)
5	and the specificity of binding for each anti-body was confirmed using non-immune rabbit
6	serum.
7	
8	Plasma metabolite and hormone analysis: Plasma glucose and lactate were analysed using
9	an auto-analyser (YSI, Inc., Yellow Springs, OH), NEFA enzymatically (31). Plasma insulin
10	(32) and irisin (33) by ELISA (Kit no. EK-067-29; Phoenix Pharmaceuticals, Inc., 330 Beach
11	Road, Burlingame, CA 94010, USA) in single assays.
12	
13	Statistical analyses
14	Differences in gene expression and protein abundance between depots with age and/or
15	different body weights were analysed using Kruskal-Wallis non-parametric tests with
16	Bonferroni correction for multiple analyses. In Study 2, longitudinal data for temperature and
17	plasma analysis were analysed by repeated measures ANOVA. Differences in the
18	temperature response to feeding, and in adipocyte size, were analysed by one-way ANOVA

1 **Results**

Changes in UCP1 and gene expression profile between depots during early development 2 As expected, the abundance of the UCP1 gene and a key regulator of BAT function, DIO2 3 4 were highest in both fat depots examined at 1 day of age and then declined (Figure 1). This 5 adaptation in gene expression occurred as white adipose tissue mass increased substantially, with growth up to 28 days of age being greater in terms of relative body weight in the 6 retroperitoneal depot (sternal 4.7+0.5; retroperitoneal 9.6+1.2 g/kg; P<0.05). At 1 day of age 7 8 the total mitochondrial protein content was greater in sternal than retroperitoneal fat, which resulted in the total amount of UCP1 protein, being higher in the sternal depot (sternal 9 1.4+0.5; retroperitoneal 0.3+0.1 arbitrary units (au) per depot; P<0.05). The rate of decline in 10 UCP1 was, however greater between 1 and 7 days of age in the sternal depot (i.e. 7 days: 11 sternal 0.7+0.1; retroperitoneal 0.5+0.1 au per depot). UCP1 protein was undetectable in 12 13 muscle at any time point.

14

Very low amounts of *UCP1* and *DIO2* mRNA were detected in skeletal muscle (Figure 1). As each fat depot lost UCP1, there was a parallel decrease in gene expression for *PDK4*, (that is present in murine BAT (34)), which was also apparent in muscle. In contrast, the gene that encodes for irisin, i.e. *FNDC5*, was highly abundant in all three tissues examined, with a clear peak in muscle at 7 days of age. Whilst there were no changes in *FNDC5* expression with age in retroperitoneal adipose tissue, in sternal fat it decreased. No change in plasma irisin

concentration was observed with age (7 days: 117±7; 28 days 129±11 ng/ml). The lipid
droplet protein *CIDEA* exhibited high transcript expression in both fat depots and did not
change with age, whereas expression was very low in muscle. RIP140 was equally abundant
in both fat and muscle, and while it showed a clear rise at 28 days in both fat depots, there
were no significant age-related changes in muscle.

6

In order to establish a clearer overview of the differences in relative gene expression of a 7 8 range of markers previously considered to be indicative of brown, beige, and white adipose 9 tissue or skeletal muscle, a more exhaustive analysis was undertaken on the samples obtained at 7 days of age (Figure 2). This demonstrated that other BAT related-genes (e.g. Eval) were 10 11 highly expressed in both fat depots, as were those genes primarily involved in either lipid 12 metabolism (i.e. FABP4) or adipogenesis (i.e. PPARy, CEBPa and β), whereas ADIRF was more abundant in sternal than retroperitoneal fat. None of these genes were present in muscle. 13 Some other genes considered to potentially regulate adipose development, such as HOXC8 14 15 and HOXC9, and the "white fat marker" gene TCF21 were also highly expressed in retroperitoneal adipose tissue, but not in muscle or, more surprisingly, in sternal adipose 16 17 tissue. Messenger RNA for En-1 was highly abundant in sternal fat, but not in the other two tissues. In contrast, SHOX2 mRNA was abundant in sternal fat and muscle, but was barely 18 19 detectable in the retroperitoneal depot. Specific muscle marker genes *CPT1b* and *Tbx15*, 20 which have been reported to be expressed during the differentiation or induction of BAT

(35,36), were highly expressed in muscle, but minimally expressed in fat. Finally, *ACSM5* mRNA was more abundant in muscle than in retroperitoneal fat, but hardly detectable in
 sternal fat.

4

To further understand the development of sternal fat the expression of additional genes were 5 6 examined (Table 3), and divided into four categories: developmental genes previously considered to be markers of brown or beige fat; and those which regulate thermogenesis, 7 8 metabolism or adipogenesis. For thermogenic genes, we observed a reduction in *PRLR* and 9 $PGC1\alpha$ expression between 7 and 28 days, whereas ATF2 expression increased. The expression of the beige/white marker gene HOXC9 and the "classical" BAT marker gene 10 11 LHX8 both rose substantially at each age, whereas that of the BAT fate-determining gene 12 PRDM16 showed a small decrease by 28 days, whilst the beige marker gene SHOX2 was unchanged. Surprisingly, changes in the expression profiles of adipogenic genes varied. The 13 mRNA abundance of PPARy and NR3C1 both increased, whereas that of CEBPa transiently 14 increased at 7 days of age and that of SREBF1 declined. A majority of other metabolic genes 15 also showed increased expression with age, i.e. adiponectin, leptin and GPR120. However, 16 mRNA abundance for FABP4 and the INSR were unchanged. 17

18

19

20

Differences in tissue temperature and metabolites in response to feeding and altered fat mass in adults

3 In adult sheep, the temperature of retroperitoneal fat was consistently higher than in sternal 4 fat and skeletal muscle (Figure 3), which might reflect its deep-body location. Nevertheless, retroperitoneal fat and skeletal muscle displayed comparable temperature responses to 5 6 feeding. The greatest feeding-induced temperature rise was in sternal fat (Figure 4). There 7 was no effect of increased fat mass on the temperature of the three tissues studied (Figures 3-8 4). Whereas low body weight/adiposity was associated with reduced temperature of both 9 adipose tissue and skeletal muscle, this effect was less pronounced in retroperitoneal fat (Figure 3). Plasma glucose and insulin were lower in the lean animals, but there was little 10 11 effect of altered adiposity on plasma NEFA and lactate (Figure 5). 12 Differences in gene profile with altered fat mass in adults 13 The abundance of UCP1 mRNA was very low in all adult tissues and UCP1 was only 14 15 consistently detectable by immunohistochemistry in sternal fat (Figure 6). UCP3 was highly abundant in skeletal muscle, but was very low in sternal and retroperitoneal fat; being 16 expressed 100-fold more in muscle than fat (i.e. skeletal muscle 5+1; adipose tissue 17 0.05+0.1). Gene expression for UCP3 was increased in sternal adipose tissue in lean 18 19 compared to obese animals (Lean 18+4; Obese 0.3+0.2 au; P<0.05), whereas protein

20 abundance was reduced (Table 4). In contrast, neither UCP1 mRNA nor protein, were altered

1 by changes in adiposity in either fat depot (data not shown). UCP2 mRNA was lower in 2 sternal and retroperitoneal fat of lean compared to control animals (e.g. retroperitoneal: Lean 3 1.0+0.3; Control 3.3+0.5 au; P<0.05). There were also no effects of body weight on UCP3, RyR1 or SERCA2a in skeletal muscle. Expression of SERCA1 mRNA was lower in skeletal 4 muscle of lean animals, but protein concentrations were again unaffected by fat mass. Finally, 5 as expected, adipocyte cell size was influenced by altered body weight and adiposity. In 6 retroperitoneal fat, adipocyte size changed in proportion to increased body weight. On the 7 8 other hand, adipocyte size was decreased in sternal fat of lean animals but there was no effect of obesity on adipocyte size in this depot (Figure 6). 9

10

1 Discussion

2 We have shown that during postnatal development in sheep, the sternal and retroperitoneal fat 3 depots exhibit contrasting gene expression profiles that could be indicative of divergent 4 prenatal origins. These differences potentially contribute to the enhanced temperature responses seen in sternal compared with retroperitoneal fat and skeletal muscle following 5 6 feeding in adulthood. Although the abundance of UCP1 within the sternal depot declines with 7 increased fat mass both during postnatal and adult life, it does not appear to compromise the 8 ability of this depot to increase its temperature in response to feeding in adulthood. 9 Furthermore, adipocyte cell size in the sternal fat depot appears unresponsive to increased adiposity, suggesting that it is likely to serve a function other than storing surplus lipid during 10 11 nutrient excess and obesity.

12

13 Divergent patterns of development between fat and muscle in early life

It is becoming apparent that identifying functional markers in BAT and/or beige adipocytes is a complex process that is influenced by depot and whether in vivo or in vitro methodologies are used (17,37,38). As we have shown previously in ovine retroperitoneal fat, there are at least three distinct phases of postnatal development (1). The major functionally related changes are seen between 1 and 28 days of postnatal age, coincident with the loss of UCP1 and the transition of brown to white adipose tissue (1). In the present study, we confirm that this critical stage of development extends to both sternal fat and muscle and is coincident

with rapid growth and functional changes within each tissue (39,40). These findings are in
accord with that recently described within epicardial fat during development of humans that
have undergone heart surgery (41). Consideration of each gene or group of genes examined,
the accepted function of each, and known developmental ontogeny in other species is given
below, thereby providing new insights into the pronounced differences in the molecular
signatures of fat and muscle.

7

8 The most notable characteristic of sternal, compared with both retroperitoneal fat and muscle, 9 was the very high abundance of *En-1* mRNA. Lineage tracing studies in mice indicate cells showing early expression of En-1 during development give rise to dermis and epaxial muscle, 10 11 but not other muscles, and interscapular BAT "bundles" (42), which is in accord with our 12 findings postnatally. Anatomical location during early development is determined along three axes: anterior-posterior, proximal-distal, and dorsal-ventral (43), but the primary 13 regulators remain to be fully elucidated, with a variety of gene families such as Wnt (44,45), 14 15 HOX (46) and Pax playing roles. HOX genes are important regulators of development (47,48), for which expression of specific combinations of the paralogous HOX gene sets 16 17 specify a particular anatomical location along the anterior-posterior axis. Our data show that HOXC8 and HOXC9 are highly expressed in the more posteriorly located retroperitoneal 18 depot, but not in the more anterior sternal depot, and that this pattern of gene expression 19

persists to 28 days. In mice, *HOXC8* and *HOXC9* gene expression is higher in retroperitoneal
 than in interscapular adipose tissue (49).

3

4 TCF21 was originally proposed as a marker for white pre-adipocytes (50), but its gene expression differs between fat depots (51) (52). Therefore, our finding that TCF21 mRNA 5 6 was only abundant in retroperitoneal fat support the hypothesis that tissue-specific patterns of TCF21 gene expression are indicative of fundamental differences between depots that are 7 8 dependent on anatomical location. Further indirect evidence of depot-specific rates of 9 development comes from examining SHOX2. Its pattern of gene expression was opposite to the HOXC genes measured, being expressed in both muscle and sternal fat, which is 10 11 anteriorly located to the retroperitoneal depot, where there is little, if any, detectable 12 expression. SHOX2 is able to interact with CEBPa to modulate ADRB3 and, by extension, regulate lipolysis in adipose tissue (53). Additionally, in mice, ablation of SHOX2 promotes 13 lipolysis (53). The low expression of this gene within retroperitoneal adipose tissue could 14 15 therefore be indicative of a more rapid mobilisation of NEFA, as well as capacity for greater growth through adulthood compared with sternal fat. Differences in metabolic capacity, with 16 respect to medium chain fatty acid synthesis between tissues, could also explain the much 17 higher mRNA abundance of ACSM5 in retroperitoneal compared with sternal adipose tissue. 18 19 ACSM5 is also considered to be a characteristic of white fat rather than BAT (34), and its 20 paucity reflects the retention of UCP1 within sternal fat. Our finding of greater gene

1 expression for ACSM5 within muscle contrasts with findings in adult rodents (54), and could 2 be indicative of the significant changes seen within muscle during early postnatal 3 development. In sheep, this is coincident with the recruitment of shivering thermogenesis 4 (40), that could be accompanied with the increased utilisation of intramuscular fat as suggested in pigs (55). Gene expression for FNDC5 also peaked at 7 days in muscle, 5 6 coincident with maximal recruitment of shivering thermogenesis as UCP1 declined (40). 7 There was no parallel change in plasma concentrations of irisin at this stage. This was not 8 entirely unexpected given the current controversy regarding the measurement of irisin (56) 9 and its potential functionality or existence (57).

10

Some changes in gene expression with age were similar in both muscle and fat depots (e.g. 11 12 PDK4) that could reflect the overall decline in basal metabolic rate (40), loss of UCP1 and pronounced fat deposition up to one month of age (39). At the same time, there is a transition 13 from lipid to glucose metabolism (58) that would be facilitated by a decline in PDK4 activity 14 15 (59), whilst the increase in leptin, adiponectin, RIP140 and GPR120 gene expression are indicative of increased adiposity. In adults, however, fat mass and plasma adiponectin and its 16 gene expression are normally negatively correlated (60). A different type of relationship 17 during early life, coincident with the rapid growth of fat, is not unexpected, as has been seen 18 for plasma leptin and the loss of its positive correlation with fat mass (61). At the same time, 19 20 both LHX8 and ATF2 gene expression increased with age and fat mass, which was not

expected given their putative "BAT identity marker roles", as described by others in ovine
retroperitoneal adipose tissue with development (62). As suggested by rodent studies, both
ATF2 and GRP120 may, therefore, have a greater role in stimulating adipogenesis rather than
thermogenesis (63,64), whilst raised RIP140 would facilitate the loss of UCP1 (65). In
summary, sternal fat development shares some characteristics with skeletal muscle that may
also impact on the retention of UCP1 and its thermogenic capacity in adulthood.

7

8 Functional consequences of UCP1 in sternal fat

9 The contribution of BAT to diet-induced thermogenesis in rodents remains contentious (66), although it does appear to have a role in both young sheep (58), children (67) and adults (7). 10 11 There is good evidence from developmental studies in both rodents and young sheep that 12 muscle is recruited to generate heat when UCP1 is absent (68) and/or nonshivering thermogenesis is compromised (40). In adult sheep temperature excursions in skeletal muscle 13 in response to feeding and central infusion of leptin are consistent with increased 14 15 thermogenesis (24,29). The basal temperature of muscle also appears to be more sensitive to total fat mass than that of either fat depot studied. This could reflect both its anatomical 16 17 position and/or the impact of an increase in the surrounding fat and its insulating properties. It should also be noted that in large mammals, such as sheep, the thermogenic response to 18 19 feeding is an entrained response (20) whereas, in rodents, there is an influence of circadian 20 rhythm (69). Furthermore, rodents are normally active in the dark phase and the sensitivity of

1 UCP1 to further stimulation is modulated by these diurnal activity patterns (70). These are 2 dependent, in part, on both light exposure and activity of the sympathetic nervous system 3 (71). A range of other factors can have a critical role in determining the thermogenic role of 4 muscle in rodents, including sarcolipin (72) and UCP3 (73). In adult sheep gene expression of UCP3 is increased in skeletal muscle after central infusion of leptin and is associated with 5 6 increased heat production and a switch towards uncoupled respiration in isolated mitochondria (24). Additionally, increased expression of *RyR1* mRNA and SERCA2a protein 7 8 in skeletal muscle coincides with dietary induced thermogenesis (29). We, however, found 9 no difference in protein abundance for either SERCA1 or 2a or UCP3 in muscle of animals of differing body weights. 10

11

12 In contrast to the acute effects of feeding, prolonged food restriction caused a marked decrease in temperature in skeletal muscle and sternal adipose tissue, an effect attenuated in 13 the retroperitoneal fat. Consistent with the decreased temperature in muscle, UCP3 gene 14 15 expression declined markedly in skeletal muscle of lean animals, but there was no associated change in protein. On the other hand, altered adiposity had no effect on UCP1 gene or protein 16 17 abundance in sternal fat, but UCP3 mRNA was reduced in the lean group. Due to the much larger mass of muscle than BAT, its contribution to metabolic homeostasis is appreciably 18 greater in sheep and humans (74), especially when plasma glucose concentrations are raised. 19 20 Notably, glucose concentrations were considerably lower in the lean group in the current

study. The reduced temperature in both skeletal muscle and sternal adipose tissue of lean
animals is indicative of homeostatic reduction in thermogenesis in response to chronic food
restriction and weight loss. This may be a mechanism to reduce energy expenditure in an
effort to maintain body weight in states of negative energy balance and/or in the lean
condition and may be mediated by lower thyroid hormone secretion (75).

6

In summary, sternal and retroperitoneal fat have distinct developmental profiles which are
different to that seen in muscle. The different developmental profiles are not only associated
with early adipose growth but also on thermogenesis in these tissues later in life. The extent
to which sternal fat expansion, and particularly UCP1 abundance, can be modulated in early
life may inform new strategies to manipulate energy balance, especially following feeding or
in response to chronic food restriction during adulthood.

13

1 Acknowledgements

2 The authors thank Dr Robyn Murphy (La Trobe University) who gifted the SERCA

3 antibodies. In addition, we thank Mr Bruce Doughton, Ms Lynda Morrish and Ms Elaine

4 Chase for animal husbandry and assistance with animal work. We thank Professor Matthew

5 Watt and Dr Ruth Meex (Monash University) for advice and guidance with regard to western

6 blotting. This work was supported by the National Health and Medical Research Council

7 project grant #1005935 (B.A.H).

8

1 **References**

- 1. Pope M, Budge H, Symonds ME. The developmental transition of ovine adipose 2 tissue through early life. Acta Physiol Scan 2014; 210:20-30 3 Lean MEJ. Brown adipose tissue in humans. Proc Nutr Soc 1989; 48:243-256 4 2. 5 3. Symonds ME, Pope M, Sharkey D, Budge H. Adipose tissue and fetal programming. Diabetologia 2012; 55:1597-1606 6 7 4. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, 8 Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360:1518-1525 9 5. Vergnes L, Davies GR, Lin JY, Yeh MW, Livhits MJ, Harari A, Symonds ME, Sacks 10 HS, Reue K. Adipocyte Browning and Higher Mitochondrial Function in Periadrenal 11 But Not SC Fat in Pheochromocytoma. J Clin Endocrinol Metab 2016; 101:4440-12 4448 13 14 6. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose 15 tissue in healthy men. N Engl J Med 2009; 360:1500-1508 16 17 7. Scotney H, Symonds ME, Law J, Budge H, Sharkey D, Manolopoulos KN. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. 18 Metabolism 2017:(In press) 19 Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, 20 8. Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman 21 BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454:961-967 22 9. Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S. Distinct populations of adipogenic 23 24 and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res 2013; 25 54:2214-2224 10. Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H, Guertin DA. PTEN loss 26 27 in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012; 16:348-362 28 11. Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are 29 30 heterogeneously and dynamically distributed. Nat Comm 2014; 5:4099 Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. 12. 31 32 Chronic peroxisome proliferator-activated receptor gamma activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, 33 UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J 34 Biol Chem 2010; 285:7153-7164 35 36 13. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19:1252-1263 37 14. Nedergaard J, Cannon B. UCP1 mRNA does not produce heat. Biochem Biophys 38 Acta 2013; 1831:943-949 39
 - 26

1 2	15.	Nedergaard J, Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab 2014: 20:396-407
3 ⊿	16.	Scheele C, Larsen TJ, Nielsen S. Novel nuances of human brown fat. Adipocyte 2014: 3:54-57
5	17.	de Iong IM Larsson O Cannon B Nedergaard I A stringent validation of mouse
6	1/1	adipose tissue identity markers. Am I Physiol Endocrinol Metab 2015: 308:E1085-
7		1105
8	18.	Alexander G. Quantitative development of adipose tissue in foetal sheep. Aust J Biol
9		Sci 1978; 31:489-503
10	19.	Alexander G, Bell AW. Quantity and calculated oxygen consumption during summit
11		metabolism of brown adipose tissue in newborn lambs. Biol Neonate 1975; 26:214-
12		220
13	20.	Henry BA, Dunshea FR, Gould M, Clarke IJ. Profiling postprandial thermogenesis in
14		muscle and fat of sheep and the central effect of leptin administration. Endocrinology
15		2008; 149:2019-2026
16	21.	Bloor ID, Sebert SP, Saroha V, Gardner DS, Keisler DH, Budge H, Symonds ME,
17		Mahajan RP. Sex differences in metabolic and adipose tissue responses to juvenile-
18		onset obesity in sheep. Endocrinology 2013; 154:3622-3631
19	22.	Henry BA, Tilbrook AJ, Dunshea FR, Rao A, Blache D, Martin GB, Clarke IJ. Long-
20		term alterations in adiposity affect the expression of melanin-concentrating hormone
21		and enkephalin but not proopiomelanocortin in the hypothalamus of ovariectomized
22		ewes. Endocrinology 2000; 141:1506-1514
23	23.	Kurose Y, Igbal J, Rao A, Murata Y, Hasegawa Y, Terashima Y, Kojima M,
24		Kangawa K, Clarke IJ. Changes in expression of the genes for the leptin receptor and
25		the growth hormone-releasing peptide/ghrelin receptor in the hypothalamic arcuate
26		nucleus with long-term manipulation of adiposity by dietary means. J
27		Neuroendocrinol 2005: 17:331-340
28	24.	Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial
29		function and increases heat production in skeletal muscle. Endocrinology 2011:
30		152:2609-2618
31	25.	Henry BA, Blache D, Rao A, Clarke IJ, Maloney SK, Disparate effects of feeding on
32		core body and adipose tissue temperatures in animals selectively bred for Nervous or
33		Calm temperament, Am J Physiol Regul Integr Comp Physiol 2010: 299:R907-917
34	26.	Møller A. Strange P. Gundersen HJG. Efficient estimation of cell volume and number
35	201	using the nucleator and the disector Journal of Microscopy 1990: 159:61-71
36	27.	Horvath TL, Erion DM, Elsworth ID, Roth RH, Shulman GL Andrews 7R, GPA
37		protects the nigrostriatal donamine system by enhancing mitochondrial function
38		Neurobiology of disease 2011; 43:152-162

1	28.	Symonds ME, Bryant MJ, Clarke L, Darby CJ, Lomax MA. Effect of maternal cold
2		exposure on brown adipose tissue and thermogenesis in the neonatal lamb. J Physiol
3		1992; 455:487-502
4	29.	Clarke SD, Lee K, Andrews ZB, Bischof R, Fahri F, Evans RG, Clarke IJ, Henry BA.
5		Postprandial heat production in skeletal muscle is associated with altered
6		mitochondrial function and altered futile calcium cycling. Am J Physiol Regul Integr
7		Comp Physiol 2012; 303:R1071-R1079
8	30.	Lee TK, Clarke IJ, St John J, Young IR, Leury BL, Rao A, Andrews ZB, Henry BA.
9		High cortisol responses identify propensity for obesity that is linked to thermogenesis
10		in skeletal muscle. FASEB J 2014; 28:35-44
11	31.	Sechen SJ, Dunshea FR, Bauman DE. Somatotropin in lactating cows: effect on
12		response to epinephrine and insulin. Am J Physiol 1990; 258:E582-588
13	32.	Clarke SD, Clarke IJ, Rao A, Cowley MA, Henry BA. Sex differences in the
14		metabolic effects of testosterone in sheep. Endocrinology 2012; 153:123-131
15	33.	Nygaard H, Slettalokken G, Vegge G, Hollan I, Whist JE, Strand T, Ronnestad BR,
16		Ellefsen S. Irisin in blood increases transiently after single sessions of intense
17		endurance exercise and heavy strength training. PLoS One 2015; 10:e0121367
18	34.	Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M. Proteome
19		differences between brown and white fat mitochondria reveal specialized metabolic
20		functions. Cell Metab 2009; 10:324-335
21	35.	Gburcik V, Cawthorn WP, Nedergaard J, Timmons JA, Cannon B. An essential role
22		for Tbx15 in the differentiation of brown and "brite" but not white adipocytes. Am J
23		Physiol Endocrinol Metab 2012; 303:E1053-1060
24	36.	Christian M. Transcriptional fingerprinting of "browning" white fat identifies NRG4
25		as a novel adipokine. Adipocyte 2015; 4:50-54
26	37.	Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, Huang TL,
27		Townsend KL, Li Y, Takahashi H, Weiner LS, White AP, Lynes MS, Rubin LL,
28		Goodyear LJ, Cypess AM, Tseng YH. Clonal analyses and gene profiling identify
29		genetic biomarkers of the thermogenic potential of human brown and white
30		preadipocytes. Nat Med 2015; 21:760-768
31	38.	Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R,
32		Chondronikola M, Cypess AM, Tseng YH, Nedergaard J, Sidossis LS, Kajimura S.
33		Genetic and functional characterization of clonally derived adult human brown
34		adipocytes. Nat Med 2015; 21:389-394
35	39.	Clarke L, Buss DS, Juniper DS, Lomax MA, Symonds ME. Adipose tissue
36		development during early postnatal life in ewe-reared lambs. Exp Phys 1997;
37		82:1015-1017
38	40.	Symonds ME, Andrews DC, Johnson PJ. The control of thermoregulation in the
39		developing lamb during slow wave sleep. J Dev Physiol 1989; 11:289-298

1	41.	Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, Lotto AA, Sacks
2		H, Symonds ME, Budge H. Gene pathway development in human epicardial adipose
3		tissue during early life. JCI Insight 2016; 1:e87460
4	42.	Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L,
5		Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal
6		dermal fate in the mouse. Dev Biol 2006; 296:164-176
7	43.	Loomis CA, Harris E, Michaud J, Wurst W, Hanks M, Joyner AL. The mouse
8		Engrailed-1 gene and ventral limb patterning. Nature 1996; 382:360-363
9	44.	Moldes M, Zuo Y, Morrison RF, Silva D, Park BH, Liu J, Farmer SR. Peroxisome-
10		proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during
11		adipogenesis. Biochem J 2003; 376:607-613
12	45.	Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT
13		signalling. Trends in endocrinology and metabolism: TEM 2009; 20:16-24
14	46.	Cantile M, Procino A, D'Armiento M, Cindolo L, Cillo C. HOX gene network is
15		involved in the transcriptional regulation of in vivo human adipogenesis. J Cell
16		Physiol 2003; 194:225-236
17	47.	Hunt P, Krumlauf R. Deciphering the Hox code: clues to patterning branchial regions
18		of the head. Cell 1991; 66:1075-1078
19	48.	Wellik DM. Hox patterning of the vertebrate axial skeleton. Developmental dynamics
20		: an official publication of the American Association of Anatomists 2007; 236:2454-
21		2463
22	49.	Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR. Adipose depots
23		possess unique developmental gene signatures. Obesity (Silver Spring) 2010; 18:872-
24		878
25	50.	Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N,
26		Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B.
27		Myogenic gene expression signature establishes that brown and white adipocytes
28		originate from distinct cell lineages. Proceedings of the National Academy of
29		Sciences of the United States of America 2007; 104:4401-4406
30	51.	Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng YH, Kahn CR.
31		Intrinsic differences in adipocyte precursor cells from different white fat depots.
32		Diabetes 2012; 61:1691-1699
33	52.	Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, Cinti S, Symonds
34		ME. Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab 2013;
35		98:E1448-1455
36	53.	Lee KY, Yamamoto Y, Boucher J, Winnay JN, Gesta S, Cobb J, Bluher M, Kahn CR.
37		Shox2 is a molecular determinant of depot-specific adipocyte function. PNAS, USA
38		2013; 110:11409-11414
39	54.	Ellis JM, Bowman CE, Wolfgang MJ. Metabolic and tissue-specific regulation of
40		acyl-CoA metabolism. PLoS One 2015; 10:e0116587

1	55.	Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castello A, Noguera
2		JL, Fernandez AI, Perez-Enciso M, Reverter A, Folch JM. From SNP co-association
3		to RNA co-expression: novel insights into gene networks for intramuscular fatty acid
4		composition in porcine. BMC Genomics 2014; 15:232
5	56.	Elsen M, Raschke S, Eckel J. Browning of white fat: does irisin play a role in
6		humans? J Endocrinol 2014; 222:R25-R38
7	57.	Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl
8		J, Thomas S, Drevon CA, Erickson HP, Maak S. Irisin - a myth rather than an
9		exercise-inducible myokine. Scientific reports 2015; 5:8889
10	58.	Symonds ME, Andrews DC, Johnson PJ. The endocrine and metabolic response to
11		feeding in the developing lamb. J Endocrinol 1989; 123:295-302
12	59.	Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel
13		B, Tavernier G, Marques MA, Moro C, Guillou H, Amri EZ, Langin D. White-to-
14		brite conversion in human adipocytes promotes metabolic reprogramming towards
15		fatty acid anabolic and catabolic pathways. Molecular metabolism 2016; 5:352-365
16	60.	Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H,
17		Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T,
18		Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T,
19		Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein,
20		adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;
21		20:1595-1599
22	61.	Bispham J, Budge H, Mostyn A, Dandrea J, Clarke L, Keisler DH, Symonds ME,
23		Stephenson T. Ambient temperature, maternal dexamethasone, and postnatal
24		ontogeny of leptin in the neonatal lamb. Pediatr Res 2002; 52:85-90
25	62.	Basse AL, Dixen K, Yadav R, Tygesen MP, Qvortrup K, Kristiansen K, Quistorff B,
26		Gupta R, Wang J, Hansen JB. Global gene expression profiling of brown to white
27		adipose tissue transformation in sheep reveals novel transcriptional components
28		linked to adipose remodeling. BMC Genomics 2015; 16:215
29	63.	Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM,
30		Spiegelman BM, Collins S. p38 mitogen-activated protein kinase is the central
31		regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein
32		1 gene. Mol Cell Biol 2004; 24:3057-3067
33	64.	Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S,
34		Fenech ME, MacIntyre D, Turner JO, Moore JD, Blackburn E, Gullick WJ, Cinti S,
35		Montana G, Parker MG, Christian M. Brown and white adipose tissues: intrinsic
36		differences in gene expression and response to cold exposure in mice. Am J Physiol
37		Endocrinol Metab 2014; 306:E945-964
38	65.	Kiskinis E, Chatzeli L, Curry E, Kaforou M, Frontini A, Cinti S, Montana G, Parker
39		MG, Christian M. RIP140 represses the "brown-in-white" adipocyte program

1		including a futile cycle of triacylglycerol breakdown and synthesis. Mol Endocrinol
2	66	2014, 20.544-550 Symonds MF Pope M Budge H The ontogeny of brown adjnose tissue Ann Rev
4	00.	Nutr 2015: 35:295-320
5	67.	Symonds ME. Brown adipose tissue growth and development. Scientifica 2013:
6		2013:14. http://dx.doi.org/10.1155/2013/305763
7	68.	Rowland LA, Bal NC, Kozak LP, Periasamy M. Uncoupling Protein 1 and Sarcolipin
8		Are Required to Maintain Optimal Thermogenesis, and Loss of Both Systems
9		Compromises Survival of Mice under Cold Stress. J Biol Chem 2015; 290:12282-
10		12289
11	69.	Blessing W, Mohammed M, Ootsuka Y. Heating and eating: brown adipose tissue
12		thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle
13		in rats. Physiol Behav 2012; 105:966-974
14	70.	Ootsuka Y, de Menezes RC, Zaretsky DV, Alimoradian A, Hunt J, Stefanidis A,
15		Oldfield BJ, Blessing WW. Brown adipose tissue thermogenesis heats brain and body
16		as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience 2009;
17		164:849-861
18	71.	Kooijman S, van den Berg R, Ramkisoensing A, Boon MR, Kuipers EN, Loef M,
19		Zonneveld TC, Lucassen EA, Sips HC, Chatzispyrou IA, Houtkooper RH, Meijer JH,
20		Coomans CP, Biermasz NR, Rensen PC. Prolonged daily light exposure increases
21		body fat mass through attenuation of brown adipose tissue activity. Proc Natl Acad
22		Sci U S A 2015; 112:6748-6753
23	72.	Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, Pant M,
24		Rowland LA, Goonasekera SA, Molkentin JD, Periasamy M. Sarcolipin is a newly
25		identified regulator of muscle-based thermogenesis in mammals. Nat Med 2012;
26		18:1575-1579
27	73.	Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, Piercy V, Carter
28		SA, Lehner I, Smith SA, Beeley LJ, Godden RJ, Herrity N, Skehel M, Changani KK,
29		Hockings PD, Reid DG, Squires SM, Hatcher J, Trail B, Latcham J, Rastan S, Harper
30		AJ, Cadenas S, Buckingham JA, Brand MD, Abuin A. Mice overexpressing human
31		uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000;
32	= 4	
33	74.	Blondin DP, Labbe SM, Phoenix S, Guerin B, Turcotte EE, Richard D, Carpentier
34		AC, Haman F. Contributions of white and brown adipose tissues and skeletal muscles
35		to acute cold-induced metabolic responses in healthy men. J Physiol 2015; 593: /01-
36	75	/14 Semanda ME Clarke L. Influence of themeid hormones and temperature and dimensional temperature of the second temperature of temperature of the second temperature of temperatu
3/	15.	Symonus IVIE, Clarke L. Influence of inyrold normones and temperature on adipose
38		ussue development and lung maturation. Proc Nutr Soc 1996; 55:56/-5/5

1 Figure Legends

Figure 1. Summary of the changes in gene expression for putative markers of brown, beige or white adipose tissue or skeletal muscle in the sternal and retroperitoneal fat depots and hind limb muscle over the first 28 days of life in young sheep. Values are means with their standard errors, n=4-6 per age group and significant differences between age groups are indicated by * P<0.05.</p>

7

Figure 2. Summary heat map comparison of qPCR gene expression between sternal and
retroperitoneal adipose tissue and skeletal muscle from six individual sheep sampled at 7
days of age. All normalised data were made relative to the highest expressing sample and are
given in arbitrary units (au) between 0-1. Each column contains data from an individual
animal for the three tissues examined and each row contains data for a specific gene. Red
squares represent the highest expression (1) and blue squares the lowest (0).

14

Figure 3. Summary of the effect of altered body weight and fat mass on changes in the temperature of sternal and retroperitoneal (RP) adipose tissue and skeletal muscle as measured continuously over a 24 h period. Values are means with standard errors of the mean and n=4-5 per age group. Grey box indicates the time at which food was available. Obese animals are shown in white squares, control in black triangles and lean in black circles. ** P<0.01 lean compared to obese and control, ^a P<0.05 lean compared to obese.

Figure 4. Summary of the effect of altered body weight and fat mass on changes in the postprandial rise in tissue temperature of sternal and retroperitoneal (RP) adipose tissue and skeletal muscle as measured after feeding. This was calculated as the amplitude of the temperature change that occurred within the feeding window (11.00 h – 16.00 h). Values are means with standard errors of the mean and n=4-5 per group and significant differences between depot for each body weight group of sheep indicted by * P<0.05; ** P<0.01 sternal compared to muscle and RP fat.

8

Figure 5. Summary of the effect of increased body weight and fat mass on changes in plasma
metabolites and insulin with feeding (represented by shaded region). Values are means with
their standard errors and n=4-5 per group and significant differences between depot for each
body weight group of sheep indicted by ** P<0.01 *** P<0.001 lean compared to control and
obese. NEFA, non-esterified fatty acids.

14

Figure 6. The effects of body weight on adipocyte size and histological appearance in sternal and retroperitoneal (RP) fat of adult sheep. Panel A: Mean adipocyte cell size with sternal represented by closed boxes and RP by open boxes. Panels B-G: representative photomicrographs of haematoxylin and eosin stained sections; Panel H: example of uncoupling protein (UCP1) immunostaining from sternal adipose tissue. Rat brown adipose tissue was used as the positive control (Panel I) and staining specificity was determined with

rat brown adipose tissue in the absence of primary antibody (Panel J). Open bars: sternal fat;
closed bars: retroperitoneal fat. Values are means with their standard errors and n=4-5 per
group and significant differences between depot for each body weight group of sheep
indicted by *P<0.05 compared to sternal fat, ^aP<0.01 compared to obese animals (within a fat
depot). Scale bar represents 50µm.

Table 1. Summary of specific ovine sequence of forward and reverse oligonucleotides primers used for real time PCR.

Gene	Accession number	Forward primer	Reverse primer	Amplicon length (bp)
ACSM5	XM_015469322.1	CCACCATATGATGTGCAGGT	TGTCTTCTCAGGGTTGTCCA	138
ADIPOQ	NM_174742.2	ATCAAACTCTGGAACCTCCTATCTAC	TTGCATTGCAGGCTCAAG	232
ADIRF	NM_001114513.2	CCACAGAAGCAGGGCAGA	AAACCCGAGAAAGCCTCA	100
ATF2	XM_004004570.1	TCCCACTTGTTCGACCAGTCA	TTGACAGTATCGCCGTTGGT	151
C/ΕΒΡα	XM_004015623.1	CTGGAGCTGACCAGTGACA	GGGCAGCTGACGGAAGAT	96
C/ΕΒΡβ	NM_176788.1	ACGACTTCCTCTCCGACCTC	CCCAGACTCACGTAGCCGTA	85
CIDEA	NM_001083449.1	AAGGCCACCATGTACGAGAT	GGTGCCCATGTGGATAAGACA	138
CPT1b	NM_001034349.2	TGATCACGTATCGCCGTAAA	GAGCACATCTGTGTCCTTCC	137
DIO2	NM_001010992.3	AGCCGCTCCAAGTCCACTC	TTCCACTGGTGTCACCTCCT	175
En-1	XM_003581845.4	AACCCGGCCATACTGCTAAT	TTCTTCTTCAGCTTCCTGGTG	152
Eva-1	XM_004016067.3	GGAATTTCCGTCCTCGAGAT	AGGATGGAGACGTCATACCG	139
FABP4	NM_174314.2	TGAAATCACTCCAGATGACAGG	TGGTGGTTGATTTTCCATCC	98
GPR120	XM_002698388.1	CCTGGGACGTGTCATTTGCTA	CTGGTGGCTCTCCGAGTAGG	140
HOXC8	XM_002704245.5	TGTAAATCCTCCGCCAACAC	TGATACCGGCTGTAAGTTTGC	140
НОХС9	XM_002704244.2	GACCTGGACCCCAGCAAC	GCTCGGTGAGGTTGAGAAC	175
INSR	XM_002688832.3	CTGCACCATCATCAACGGAA	CGTAACTTCCGGAAGAAGGA	162
LEP	NM_173928.2	CCAGGATGACACCAAAACC	TGGACAAACTCAGGAGAGG	140
LHX8	XM_004003563.1	AGAGCACGCCACAAGAAACA	AGGGCTGGAGTCCAAGAGTT	199
NR3C1	NM_001206634.1	ACTGCCCCAAGTGAAAACAGA	ATGAACAGAAATGGCAGACATTTTATT	151
PGC1α	NM_177945.3	GATTGGCGTCATTCAGGAGC	CCAGAGCAGCACACTCGAT	84
ΡΡΑRγ	NM_181024.2	GACCCGATGGTTGCAGATTA	TGAGGGAGTTGGAAGGCTCT	145

ΡΡΑΚγ	NM_181024.2	GACCCGATGGTTGCAGATTA	TGAGGGAGTTGGAAGGCTCT	145
PRDM16	XM_003583245.1	TGGCAGCTGGCTCAAGTACA	CGGAACGTGGGCTCCTCATC	198
PRLR	NM_174155.3	CTCCACCCACCATGACTGAT	CAGCGAATCTGCACAAGGTA	169
RIP140	XM_002684642.2	CGAGGACTTGAAACCAGAGC	TCTTAGGGACCATGCAAAGG	179
RyR1	NM_001206777	GGGATATGGGTGACACGAC	TCTCAGCATCAGCTTTCTCC	158
Serca 1a	XM_004020863.3	GCTGCTGTGGGCAATAAGAT	GCCAGTACCCCACTCTTTGA	150
Serca 2a	XM_012097784.2	CAGGTGTACCCACATTCGAG	TTCCCGAATGACAGACATGA	85
SHOX2	NM_001205527.1	CGCCTTTATGCGTGAAGAAC	TTGGCTGGCAGCTCCTAT	142
SREBF1	XM_004013336.1	AGGGGGACAAGGAGTTCTCA	CTCCGGCCATATCCGAACAG	72
Tbx15	NM_001079775.1	AATGGACATTGTACCTGTGGAC	TGACCACCTGTCTCATCCAA	158
TCF21	XM_014480981.1	ATCCTGGCCAACGACAAGTA	TCAGGTCACTCTCGGGTTTC	94
UCP1	XM_003587124.1	GGGCTTTGGAAAGGGACTACT	CAGGGCACATCGTCTGCTAAT	128
UCP2	NM_001033611	AAGGCCCACCTAATGACAGA	CCCAGGGCAGAGTTCATGT	128
UCP3	NM_001308581.1	ACCTGCTCACCGACAACTTC	CATATACCGCGTCTTCACCA	107
β-2-microglobulin	AY549962	CCAGAAGATGGAAAGCCAAA	CAGGTCTGACTGCTCCGATT	117
β-Actin	U39357	GCAAAGACCTCTACGCCAAC	TGATCTTGATCTTCATCGTGCT	120
Cyclophilin	JX534530	GCATACAGGTCCTGGCATCT	CATGCCCTCTTTCACTTTGC	136
IPO8	NM_001206120.1	GCCCTTGCTCTTCAGTCATT	GTGCAACAGCTCCTGCATAA	93
KDM2B	XM_004017579.1	CGGTCCTACCTCACTCAGGA	CCGTCTATGCTGGGCTTTCT	74
Malate dehydrogenase 1	AF233351	CGTTGCAGAGCTGAAGGATT	GGTGCACTGAGAGATCAAGG	100
RPLPO	NM_001012682.1	CAACCCTGAAGTGCTTGACAT	AGGCAGATGGATCAGCCA	227
ТВР	NM_001075742.1	CTTGGACTTCAAGATTCAGAACA	CCAGGAAATAACTCTGGCTCA	120
YWHAZ	NM_174814.2	CCGGACACAGAACATCCAGTC	TCAGCTCCTTGCTCAGTTACAG	125

Those listed at the bottom of Table that are shaded are the house-keeping genes.

Animal age 1 day 7 days 28 days Thermogenesis PRLR 400 ± 80 c $390 \pm 50^{\text{ e}}$ 100 ± 10 c, e PGC1a $11\ 270\pm 1\ 970\ ^{c}$ $10\ 800 \pm 1\ 540\ ^{\rm d}$ $2\ 220\pm 650^{\ c,\ d}$ $7\ 090\pm510^{\ a,\ e}$ $4\ 770 \pm 280^{a}$ $4\ 300 \pm 180^{\ e}$ ATF2 310 ± 70 CIDEA 304 ± 56 400 ± 30 Development НОХС9 $65 \pm 10^{\circ}$ 110 ± 10 $190 \pm 30^{\circ}$ 210 ± 70^{b} LHX8 $10 \pm 1^{a, b}$ $120\pm40~^a$ 120 ± 40^{a} 60 ± 10^{a} PRDM16 80 ± 10 SHOX2 $1\ 190 \pm 420$ $1\ 420 \pm 210$ 990 ± 90 Adipogenesis $\overline{34\ 670}\pm 1\ 890$ $46\ 480\pm 6\ 110\ ^{c}$ $21\ 810 \pm 4\ 340\ ^{\circ}$ PPARy $12\ 820\pm 1\ 180\ ^{d}$ $27\ 130 \pm 1\ 920\ ^{c,\,d}$ $12\ 300\pm 3\ 070\ ^{c}$ C/EBPa NR3C1 $17\ 820 \pm 2\ 590^{a}$ $15\ 870\pm 680\ ^{e}$ $26\ 450\pm910^{a,e}$ 4440 ± 270^{a} SREBF1 $8\ 850 \pm 2\ 860\ ^{c}$ $3\ 350\pm260^{a, c}$ Metabolism $110\pm40^{a,e}$ LEP $1\ 970\pm470\ ^a$ $6\ 100 \pm 1\ 200\ ^{e}$ ADIPOQ $(x10^3)$ $130\pm30^{a, c}$ 370 ± 30^{a} $530 \pm 80^{\circ}$ $FABP4 (x10^{3})$ $1\ 450 \pm 390$ $1\ 730\pm110$ 2.090 ± 300 GPR120 10 ± 5^{e} $60 \pm 20^{\circ}$ $560 \pm 150^{\text{ c, e}}$ INSR $5\ 150 \pm 1\ 960$ $7\ 240 \pm 860$ $5\ 290\pm580$

Table 3. Summary of the changes in gene expression of putative markers of a) thermogenic, b) developmental, c) adipogenic and d) metabolic pathways in sternal adipose tissue over the first month of postnatal life in sheep.

Values are mean copy number with their standard errors, n=5-6 per group

Significant differences with age indicated by similar superscripts: ^a, ^b p<0.05; ^c, d p<0.01; ^e p <0.001 Table 4. Summary of the effects of altered adult body weight on the protein abundance of uncoupling protein (UCP) 1 and 3 in fat and skeletal muscle and of potential thermogenic proteins (i.e. sarcoplasmic reticulum calcium-transporting ATPases (SERCA)) in muscle.

	Lean	Control	Obese	
Skeletal muscle				
UCP3	0.63±0.30	1.0±0.26	1.00 ± 0.25	
SERCA1	1.26±0.16	1.0 ± 0.14	1.06 ± 0.17	
SERCA2a	1.18±0.11	$1.0{\pm}0.08$	1.06 ± 0.10	
Sternal adipose tissue				
UCP1	1.22±0.16	$1.0{\pm}0.18$	0.99 ± 0.20	
UCP3	$0.68{\pm}0.17^{a}$	$1.0{\pm}0.08$	1.35±0.10 ^c	
Retroperitoneal adipose tissue				
UCP1	1.05 ± 0.16	$1.0{\pm}0.09$	1.04 ± 0.10	
UCP3	0.73±0.08	1.0±0.16	1.02±0.10	

All results expressed in arbitrary units, relative to controls and corrected against the density of staining for total protein.

Significant differences between body weight groups indicated by different superscripts a vs b P<0.05; a vs c P<0.01

Figure 2 Figure 2

Skeletal muscle	Sternal adipose	Retroperitoneal adipose		
			UCP1 DIO2 Eva1	Brown genes
			FABP4 PPARg	Lipid vacuole
			CEBPalpha CEBPbeta	Adipogenesis
			HOXC8 HOXC9	
			TCF21 ADIRF	White gene Early adipogenesis
			En1 SHOX2	Muscle lineage Represses ADRB3/Lipolysis?
			CPT1b Tbx15	Expression predominantly apparent in
			ACSM5	muscle group

Figure 4 Figure 4

Figure 5

Time of day (h)

Figure 6 Figure 6

Supplemental Material

Click here to access/download Supplemental Material Suppl Figure.docx

Protein	Antigen Sequence (If Known)			
larget		Name of antibody	Manufacturer, Catalog No., c Species Raise	
UCP1		anti-UCP1	Antibodies Australia	Rabbit
UCP3	RALMKVQVLRESPF	Ab34677	Abcam	Rabbit
SERCA1		CaF2-5D2	Developmental Studies Mouse	
SERCA2a		CaS/C1	Developmental Studi	es Mouse

d in Monocion Dilution used

0.111111 0.736111

0.736111

3.513889