975 research outputs found
Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries
We investigate the capability of LISA to measure the sky position of
equal-mass, nonspinning black hole binaries, combining for the first time the
entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the
complete three-channel LISA response. We consider an ensemble of systems near
the peak of LISA's sensitivity band, with total rest mass of 2\times10^6
M\odot, a redshift of z = 1, and randomly chosen orientations and sky
positions. We find median sky localization errors of approximately \sim3
arcminutes. This is comparable to the field of view of powerful electromagnetic
telescopes, such as the James Webb Space Telescope, that could be used to
search for electromagnetic signals associated with merging massive black holes.
We investigate the way in which parameter errors decrease with measurement
time, focusing specifically on the additional information provided during the
merger-ringdown segment of the signal. We find that this information improves
all parameter estimates directly, rather than through diminishing correlations
with any subset of well- determined parameters. Although we have employed the
baseline LISA design for this study, many of our conclusions regarding the
information provided by mergers will be applicable to alternative mission
designs as well.Comment: 9 pages, 5 figures, submitted to Phys. Rev.
Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA
We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters
Acute Heart Failure Assessment: The Role of Focused Emergency Cardiopulmonary Ultrasound in Identification and Early Management
Sudden cardiac death in patients with ischemic heart failure undergoing coronary artery bypass grafting results from the STICH randomized clinical trial (Surgical Treatment for Ischemic Heart Failure)
Background—The risk of sudden cardiac death (SCD) in patients with heart failure following CABG has not been examined in a contemporary clinical trial of surgical revascularization. This analysis describes the incidence, timing and clinical predictors of SCD after CABG.
Methods—Patients enrolled in the Surgical Treatment of Ischemic Heart Failure (STICH) trial who underwent CABG with or without surgical ventricular reconstruction (SVR) were included. We excluded patients with prior ICD and those randomized only to medical therapy. The primary outcome was SCD as adjudicated by a blinded committee. A Cox model was used to examine and identify predictors of SCD. The Fine and Gray method was used to estimate the incidence of SCD accounting for the competing risk of other deaths.
Results—Over a median follow-up of 46 months, 113 patients of 1411 patients who received CABG without (n = 934) or with SVR (n = 477) had SCD; 311 died of other causes. The mean LVEF at enrollment was 28±9%. The 5-year cumulative incidence of SCD was 8.5%. Patients who had SCD and those who did not die were younger and had fewer comorbid conditions than those who died for reasons other than SCD. In the first 30 days after CABG, SCD (n=5) accounted for 7% of all deaths. The numerically greatest monthly rate of SCD was in the 31-90 day time period. In a multivariable analysis including baseline demographics, risk factors, coronary anatomy and LV function, ESVI and BNP were most strongly associated with SCD.
Conclusions—The monthly risk of SCD shortly after CABG among patients with a low LVEF is highest between the first and third month, suggesting that risk stratification for SCD should occur early in the postoperative period, particularly in patients with increased preoperative ESVI and/or BNP
Policy Improvement in Cribbage
Cribbage is a card game involving multiple methods of scoring which each receive varying emphasis over the course of a typical game. Reinforcement learning is a machine learning strategy in which an agent learns to accomplish a task via direct experience by collecting rewards based on performance. In this thesis, reinforcement learning is applied to the game of cribbage, improving an agent’s policy of combining multiple basic strategies, according to the needs of the dynamic state of the game. From inspection, a reasonable policy is learned by the agent over the course of a million games, but an increase in performance was not demonstrated
The Shimura-Taniyama Conjecture and Conformal Field Theory
The Shimura-Taniyama conjecture states that the Mellin transform of the
Hasse-Weil L-function of any elliptic curve defined over the rational numbers
is a modular form. Recent work of Wiles, Taylor-Wiles and
Breuil-Conrad-Diamond-Taylor has provided a proof of this longstanding
conjecture. Elliptic curves provide the simplest framework for a class of
Calabi-Yau manifolds which have been conjectured to be exactly solvable. It is
shown that the Hasse-Weil modular form determined by the arithmetic structure
of the Fermat type elliptic curve is related in a natural way to a modular form
arising from the character of a conformal field theory derived from an affine
Kac-Moody algebra
Low-frequency gravitational-wave science with eLISA/NGO
We review the expected science performance of the New Gravitational-Wave
Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space
Agency for launch in the early 2020s. eLISA will survey the low-frequency
gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a
broad variety of systems and events throughout the Universe, including the
coalescences of massive black holes brought together by galaxy mergers; the
inspirals of stellar-mass black holes and compact stars into central galactic
black holes; several millions of ultracompact binaries, both detached and mass
transferring, in the Galaxy; and possibly unforeseen sources such as the relic
gravitational-wave radiation from the early Universe. eLISA's high
signal-to-noise measurements will provide new insight into the structure and
history of the Universe, and they will test general relativity in its
strong-field dynamical regime.Comment: 20 pages, 8 figures, proceedings of the 9th Amaldi Conference on
Gravitational Waves. Final journal version. For a longer exposition of the
eLISA science case, see http://arxiv.org/abs/1201.362
Cloud Security Consciousness: A Need For Realisation In Entrepreneurial Small Firms
Cloud computing represents a fundamental shift in the way information services are provided but with its unique architecture comes additional security challenges, many of which are technical in nature. However, the paradigm shift also presents new challenges, which are non-technical and whether or not companies actually consider all of these issues in moving to the cloud is a matter of concern. This paper attempts to elevate the notion of cloud security consciousness (CSC) in the domain of small firms with a goal of introducing a level of innateness into the concept in its practical use. By synthesising CSC with various behavioural theories including coping theory, we seek to place CSC and the coping process at the centre of a security-centric cognitive framework for cloud adoption, while recognising that such coping processes are heavily shaped by both social influence and self-efficacy factors
Valence bond solid formalism for d-level one-way quantum computation
The d-level or qudit one-way quantum computer (d1WQC) is described using the
valence bond solid formalism and the generalised Pauli group. This formalism
provides a transparent means of deriving measurement patterns for the
implementation of quantum gates in the computational model. We introduce a new
universal set of qudit gates and use it to give a constructive proof of the
universality of d1WQC. We characterise the set of gates that can be performed
in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical
and Genera
- …
