84 research outputs found

    Bur Buttercup, Ranunculus testiculatus, New to Eastern Canada

    Get PDF
    Bur Buttercup (Ranunculus testiculatus) is newly reported for eastern Canada based on two collections from campgrounds in southern Ontario. This vernal, annual, Eurasian weed is widespread in western North America and is expanding its range in the east; it should be expected elsewhere in eastern Canada. Bur Buttercup is known to be toxic to livestock

    Hydrogen electrooxidation under conditions of high mass transport in room-temperature ionic liquids and the role of underpotential-deposited hydrogen

    Get PDF
    The hydrogen oxidation reaction (HOR), an electrocatalytic reaction of fundamental and applied interest, was studied in the protic ionic liquid (PIL) diethylmethylammonium trifluoromethanesulfonate, [dema][TfO], at Pt electrodes using rotating disk electrode (RDE) and ultramicroelectrode (UME) voltammetry. A steady-state HOR current is observed during RDE voltammetry at overpotentials > 50 mV but an additional plateau is observed in the overpotential region 50-200 mV when using UMEs. The difference in voltammetric responses is attributed to higher rate of mass transport to the UME than to the RDE. Three models have been used to fit the experimental data. The first is a dual-pathway model, which assumes that the Tafel-Volmer and Heyrovsky-Volmer pathways are both active over the potential range of interest and no blockage of catalytic sites occurs during the reaction. The second is a dual-pathway model, which assumes that reaction intermediates block access of H2 to catalytic sites. The third is based on the premise that underpotential-deposited hydrogen atoms (Hupd) can block adsorption and electrooxidation of H2 at the Pt surface. While each model fits the polarisation curves reasonably well, detailed analysis suggests that the Hupd- blocking model describes the responses better. To the best of our knowledge, this work is the first to demonstrate the advantages of UME voltammetry over RDE voltammetry for studying electrocatalytic reactions in PILs, and the first to show that Hupd can inhibit an electrocatalytic reactions in an ionic liquid, a factor that may become important as the technological applications of these liquids increase

    OIL SPILL RESPONSE ENGINEERING AND PLANNING

    Get PDF

    Best Practice for Evaluating Electrocatalysts for Hydrogen Economy

    Get PDF
    Screening new electrocatalysts is key to the development of new materials for next-generation energy devices such as fuel cells and electrolysers. The counter electrodes used in such tests are often made from materials such as Pt and Au, which can dissolve during testing and deposit onto test electrocatalysts, resulting in inaccurate results. The most common strategy for preventing this effect is to separate the counter electrode from the test material using an ion-transporting Nafion membrane. Here, we use X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, mass spectrometry, and voltammetry to demonstrate the limitations of this approach during constant-current, extended stability testing of electro-catalysts for H2 evolution. We show that Nafion membranes cannot prevent contamination of carbon electrocatalysts by Pt and Au counter electrodes, leading to an apparent increase in electrocatalytic activity of the carbon. We then demonstrate that carbon counter electrodes in undivided cells can contaminate and deactivate Pt and Au electrocatalysts for H2 evolution. We show that use of a setup comprising a glass frit separating a carbon counter electrode from the test electrocatalyst can prevent these effects. Finally, we discuss these phenomena using H2 evolution at MoS2 and at a K6[P2W18O62](H2O)14/carbon nanotube composite as test reactions

    Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks

    Get PDF
    The use of electrically charged, polymerized ionic liquids (polyILs) offers opportunities for the development of gel–polymer electrolytes (GPEs), but the rational design of such systems is in its infancy. In this work, we compare the properties of polyIL/IL GPEs based on 1-butyl-3-(4-vinylbenzyl)imidazolium bis(trifluromethanesulfonyl)imide containing trapped ammonium-based protic ionic liquids (ILs) with an analogous series based on the electrically neutral host polymer 1-(4-vinylbenzyl)imidazole. The materials are synthesized by photopolymerizing ionic and neutral monomers in the presence of diethylmethylammonium trifluoromethanesulfonate, [dema][TfO], diethylmethylammonium trifluoroacetate, [dema][TFAc], and diethylmethylammonium bis[trifluoromethanesulfonyl]imide, [dema][Tf2N], respectively. The resulting materials are characterized using electron microscopy, infrared spectroscopy, thermal analysis, Raman spectroscopy, and AC-impedance analysis. Spectroscopic analysis confirms that the ILs are distributed throughout the polymers, unless the GPE also contains poly(diallyldimethylammonium) bis[trifluoromethanesulfonyl]imide, when separation of the components occurs. The polyIL/IL GPEs are more electrochemically and thermally stable, and up to six times more conductive, than the materials based on the neutral host. As a proof-of-concept demonstration, we show that polyIL/IL gels can be 3D printed using readily available 3D-printing hardware

    Noise Pollution Filters Bird Communities Based on Vocal Frequency

    Get PDF
    BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics

    Systemic Inhibition of NF-κB Activation Protects from Silicosis

    Get PDF
    Background: Silicosis is a complex lung disease for which no successful treatment is available and therefore lung transplantation is a potential alternative. Tumor necrosis factor alpha (TNFα) plays a central role in the pathogenesis of silicosis. TNFα signaling is mediated by the transcription factor, Nuclear Factor (NF)-κB, which regulates genes controlling several physiological processes including the innate immune responses, cell death, and inflammation. Therefore, inhibition of NF-κB activation represents a potential therapeutic strategy for silicosis. Methods/Findings: In the present work we evaluated the lung transplant database (May 1986-July 2007) at the University of Pittsburgh to study the efficacy of lung transplantation in patients with silicosis (n = 11). We contrasted the overall survival and rate of graft rejection in these patients to that of patients with idiopathic pulmonary fibrosis (IPF, n = 79) that was selected as a control group because survival benefit of lung transplantation has been identified for these patients. At the time of lung transplantation, we found the lungs of silica-exposed subjects to contain multiple foci of inflammatory cells and silicotic nodules with proximal TNFα expressing macrophage and NF-κB activation in epithelial cells. Patients with silicosis had poor survival (median survival 2.4 yr; confidence interval (CI): 0.16-7.88 yr) compared to IPF patients (5.3 yr; CI: 2.8-15 yr; p = 0.07), and experienced early rejection of their lung grafts (0.9 yr; CI: 0.22-0.9 yr) following lung transplantation (2.4 yr; CI:1.5-3.6 yr; p<0.05). Using a mouse experimental model in which the endotracheal instillation of silica reproduces the silica-induced lung injury observed in humans we found that systemic inhibition of NF-κB activation with a pharmacologic inhibitor (BAY 11-7085) of IκBα phosphorylation decreased silica-induced inflammation and collagen deposition. In contrast, transgenic mice expressing a dominant negative IκBα mutant protein under the control of epithelial cell specific promoters demonstrate enhanced apoptosis and collagen deposition in their lungs in response to silica. Conclusions: Although limited by its size, our data support that patients with silicosis appear to have poor outcome following lung transplantation. Experimental data indicate that while the systemic inhibition of NF-κB protects from silica-induced lung injury, epithelial cell specific NF-κB inhibition appears to aggravate the outcome of experimental silicosis. © 2009 Di Giuseppe et al

    Variation in Size and Growth of the Great Scallop Pecten maximus along a Latitudinal Gradient

    Get PDF
    Understanding the relationship between growth and temperature will aid in the evaluation of thermal stress and threats to ectotherms in the context of anticipated climate changes. Most Pecten maximus scallops living at high latitudes in the northern hemisphere have a larger maximum body size than individuals further south, a common pattern among many ectotherms. We investigated differences in daily shell growth among scallop populations along the Northeast Atlantic coast from Spain to Norway. This study design allowed us to address precisely whether the asymptotic size observed along a latitudinal gradient, mainly defined by a temperature gradient, results from differences in annual or daily growth rates, or a difference in the length of the growing season. We found that low annual growth rates in northern populations are not due to low daily growth values, but to the smaller number of days available each year to achieve growth compared to the south. We documented a decrease in the annual number of growth days with age regardless of latitude. However, despite initially lower annual growth performances in terms of growing season length and growth rate, differences in asymptotic size as a function of latitude resulted from persistent annual growth performances in the north and sharp declines in the south. Our measurements of daily growth rates throughout life in a long-lived ectothermic species provide new insight into spatio-temporal variations in growth dynamics and growing season length that cannot be accounted for by classical growth models that only address asymptotic size and annual growth rate
    corecore