371 research outputs found

    Frequent use of paracetamol and risk of allergic disease among women in an Ethiopian population

    Get PDF
    Introduction The hypothesis that paracetamol might increase the risk of asthma and other allergic diseases have gained support from a range of independent studies. However, in studies based in developed countries, the possibility that paracetamol and asthma are associated through aspirin avoidance is difficult to exclude. Objectives To explore this hypothesis among women in a developing country, where we have previously reported aspirin avoidance to be rare. Methods In 2005/6 a population based cohort of 1065 pregnant women was established in Butajira, Ethiopia and baseline demographic data collected. At 3 years post birth, an interview-based questionnaire administered to 945 (94%) of these women collected data on asthma, eczema, and hay fever in the past 12 month, frequency of paracetamol use and potential confounders. Allergen skin tests to Dermatophagoides pteronyssinus and cockroach were also performed. The independent effects of paracetamol use on allergic outcomes were determined using multiple logistic regression analysis. Findings The prevalence of asthma, eczema and hay fever was 1.7%, 0.9% and 3.8% respectively; of any one of these conditions 5.5%, and of allergen sensitization 7.8%. Paracetamol use in the past month was reported by 29%, and associations of borderline significance were seen for eczema (adjusted OR (95% CI) = 8.51 (1.68 to 43.19) for 1–3 tablets and 2.19 (0.36 to 13.38) for ≥4 tablets, compared to no tablets in the past month; overall p = 0.055) and for ‘any allergic condition’ (adjusted OR (95% CI) = 2.73 (1.22 to 6.11) for 1–3 tablets and 1.35 (0.67 to 2.70) for ≥4 tablets compared to 0 in the past month; overall p = 0.071). Conclusions This study provides further cross-sectional evidence that paracetamol use increases the risk of allergic disease

    Accelerating Community College Graduation Rates: A Benefit–Cost Analysis

    Get PDF
    This article reports a benefit–cost evaluation of the Accelerated Study in Associate Programs (ASAP) of the City University of New York (CUNY). ASAP was designed to accelerate associate degree completion within 3 years of degree enrollment at CUNY’s community colleges. The program evaluation revealed that the completion rate for the examined cohort increased from 24.1% to 54.9%, and cost per graduate declined considerably (Levin & Garcia, 2012; Linderman & Kolenovic, 2012). The returns on investment to the taxpayer include the benefits from higher tax revenues and lower costs of spending on public health, criminal justice, and public assistance. For each dollar of investment in ASAP by taxpayers, the return was 3to3 to 4. For each additional graduate, the taxpayer gained an amount equal to a certificate of deposit with a value of 146,000(netofthecostsoftheinvestment).Basedontheseestimatedreturns,acohortof1,000studentsenrolledinASAPwouldgeneratenetfiscalbenefitsforthetaxpayerofmorethan146,000 (net of the costs of the investment). Based on these estimated returns, a cohort of 1,000 students enrolled in ASAP would generate net fiscal benefits for the taxpayer of more than 46 million relative to enrolling in the conventional degree program. ASAP results demonstrate that an effective educational policy can generate returns to the taxpayer that vastly exceed the public investment required

    Environmental impacts and decarbonization strategies in the cement and concrete industries

    Get PDF
    The use of cement and concrete, among the most widely used man-made materials, is under scrutiny. Owing to their large-scale use, production of cement and concrete results in substantial emission of greenhouse gases and places strain on the availability of natural resources, such as water. Projected urbanization over the next 50–100 years therefore indicates that the demand for cement and concrete will continue to increase, necessitating strategies to limit their environmental impact. In this Review, we shed light on the available solutions that can be implemented within the next decade and beyond to reduce greenhouse gas emissions from cement and concrete production. As the construction sector has proven to be very slow-moving and risk-averse, we focus on minor improvements that can be achieved across the value chain, such as the use of supplementary cementitious materials and optimizing the clinker content of cement. Critically, the combined effect of these marginal gains can have an important impact on reducing greenhouse gas emissions by up to 50% if all stakeholders are engaged. In doing so, we reveal credible pathways for sustainable concrete use that balance societal needs, environmental requirements and technical feasibility

    Aluminum-rich belite sulfoaluminate cements: clinkering and early age hydration

    Get PDF
    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO2 into the atmosphere when compared to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich BSA clinkers with nominal mineralogical compositions in the range C2S (50-60%), C4A3(2030 (20- 30%), CA (10%) and C12A7 (10%). Using thermogravimetry, differential thermal analysis, high temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, we found that burning for 15 minutes at 1350ºC was the optimal procedure, in these experimental conditions, for obtaining the highest amount of C4A3, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt% of C4A3,had19.6,27.1and27.7wt, had 19.6, 27.1 and 27.7 wt%, C4A3 respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the b-C2S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C4A3$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution

    Deflection control for reinforced recycled aggregate concrete beams: Experimental database and extension of the fib Model Code 2010 model

    Get PDF
    Recycled aggregate concrete (RAC) has emerged as a viable solution for solving some of the environmental problems of concrete production. However, design guidelines for deflection control of reinforced RAC members have not yet been proposed. This study presents a comprehensive analysis of the applicability of the fib Model Code 2010 (MC2010) deflection control model to reinforced RAC beams. Three databases of long-term studies on natural aggregate concrete (NAC) and RAC beams were compiled and meta-analyses of deflection predictions by MC2010 were performed. First, the MC2010 deflection control model was tested against a large database of long-term tests on NAC beams. Second, a database of RAC and companion NAC beams was compiled and initial and long-term deflections were calculated using the MC2010 model. It was shown that deflections of RAC beams are significantly underestimated relative to NAC beams. Previously proposed modifications for MC2010 equations for shrinkage strain and creep coefficient were used, and new modifications for the modulus of elasticity and empirical coefficient β were proposed. The improved MC2010 deflection control model on RAC beams was shown to have equal performance to that on companion NAC beams. The proposals presented in this paper can help engineers to more reliably perform deflection control of reinforced RAC members.This is the peer-reviewed version of the article: N. Tošić, S. Marinković, and J. de Brito, ‘Deflection control for reinforced recycled aggregate concrete beams: Experimental database and extension of the fib Model Code 2010 model’, Structural Concrete, vol. 20, no. 6, pp. 2015–2029, 2019 [https://doi.org/10.1002/suco.201900035

    Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    Get PDF
    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2)⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    Calorimetric study of geopolymer binders based on natural pozzolan

    Get PDF
    This paper investigates the kinetics of geopolymerisation in an inorganic polymeric binder based on a natural pozzolan. The heat released by the exothermic geopolymerisation reaction process is monitored under isothermal temperature conditions, maintained in a differential scanning calorimeter using a water circulation cell. Calorimetric data are obtained isothermally at 65, 75, and 85 °C with various Na2O/Al2O3 and SiO2/Na2O molar ratios and in the presence and absence of small amounts of calcium aluminate cement (used as an efflorescence control admixture in these binder systems). The first stage of reaction, which is rapid and strongly exothermic, is shortened as the temperature increases. The total heat of reaction increases in the mixes containing calcium aluminate cement, but the apparent activation energy calculated using a pseudo-first-order reaction model is lower than without added calcium aluminate cement. At a constant overall SiO2/Na2O molar ratio, the apparent activation energy is decreased as the Na2O/Al2O3 molar ratio increases. Calcium aluminate cement, therefore, reduces the minimum energy required to initiate geopolymerisation reactions of this natural pozzolan and facilitates the progress of the reactions which lead to formation of a cementitious product
    corecore