383 research outputs found

    Mixed layer temperature response to the southern annular mode: Mechanisms and model representation

    Get PDF
    Previous studies have shown that simulated sea surface temperature (SST) responses to the southern annular mode (SAM) in phase 3 of the Coupled Model Intercomparison Project (CMIP3) climate models compare poorly to the observed response. The reasons behind these model inaccuracies are explored. The ocean mixed layer heat budget is examined in four of the CMIP3 models and by using observations- reanalyses. The SST response to the SAM is predominantly driven by sensible and latent heat flux and Ekman heat transport anomalies. The radiative heat fluxes play a lesser but nonnegligible role. Errors in the simulated SST responses are traced back to deficiencies in the atmospheric response to the SAM. The models exaggerate the surface wind response to the SAM leading to large unrealistic Ekman transport anomalies. During the positive phase of the SAM, this results in excessive simulated cooling in the 40°-65°S latitudes. Problems with the simulated wind stress responses, which relate partly to errors in the simulated winds themselves and partly to the transfer coefficients used in the models, are a key cause of the errors in the SST response. In the central Pacific sector (90°-150°W), errors arise because the simulated SAM is too zonally symmetric. Substantial errors in the net shortwave radiation are also found, resulting from a poor repre- sentation of the changes in cloud cover associated with the SAM. The problems in the simulated SST re- sponses shown by this study are comparable to deficiencies previously identified in the CMIP3 multimodel mean. Therefore, it is likely that the deficiencies identified here are common to other climate models

    Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons

    Get PDF
    Tendon is composed of rope-like fascicles, bound together by interfascicular matrix (IFM). Our previous work shows that the IFM is critical for tendon function, facilitating sliding between fascicles to allow tendons to stretch. This function is particularly important in energy storing tendons, which experience extremely high strains during exercise, and therefore require the capacity for considerable inter-fascicular sliding and recoil. This capacity is not required in positional tendons. Whilst we have previously described the quasi-static properties of the IFM, the fatigue resistance of the IFM in functionally distinct tendons remains unknown. We therefore tested the hypothesis that fascicles and IFM in the energy storing equine superficial digital flexor tendon (SDFT) are more fatigue resistant than those in the positional common digital extensor tendon (CDET). Fascicles and IFM from both tendon types were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results demonstrated that both fascicles and IFM from the energy storing SDFT were able to resist a greater number of cycles before failure than those from the positional CDET. Further, SDFT fascicles and IFM exhibited less hysteresis over the course of testing than their counterparts in the CDET. This is the first study to assess the fatigue resistance of the IFM, demonstrating that IFM has a functional role within tendon and contributes significantly to tendon mechanical properties. These data provide important advances into fully characterising tendon structure-function relationships

    Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons

    Get PDF
    Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury

    The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons

    Get PDF
    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury

    An in vitro investigation into the effects of 10Hz cyclic loading on tenocyte metabolism

    Get PDF
    Tendinopathy is a prevalent, highly debilitating condition, with poorly defined aetiology. A wide range of clinical treatments have been proposed, with systematic reviews largely supporting shock wave therapy or eccentric exercise. Characterising these treatments has demonstrated both generate perturbations within tendon at a frequency of approximately 812Hz. Consequently, it is hypothesised that loading in this frequency range initiates increased anabolic tenocyte behaviour, promoting tendon repair. The primary aim of this study is to investigate the effects of 10Hz perturbations on tenocyte metabolism, comparing gene expression in response to a 10Hz and 1Hz loading profile. Tenocytes from healthy and tendinopathic human tendons were seeded into 3D collagen gels and subjected to 15 mins cyclic strain at 10Hz or 1Hz. Tenocytes from healthy tendon showed increased expression of all analysed genes in response to loading, with significantly increased expression of inflammatory and degradative genes with 10Hz, relative to 1Hz loading. By contrast, whilst the response of tenocytes from tendinopathy tendon also increased with 10Hz loading, the overall response profile was more varied and less intense, possibly indicative of an altered healing response. Through inhibition of the pathway, IL1 was shown to be involved in the degradative and catabolic response of cells to high frequency loading, abrogating the loading response. This study has demonstrated for the first time that loading at a frequency of 10Hz may enhance the metabolic response of tenocytes by initiating an immediate degradatory and inflammatory cell response through the IL1 pathway, perhaps as an initial stage of tendon healing

    The role of eddies in the Southern Ocean temperature response to the southern annular mode

    Get PDF
    © Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected] role of eddies in modulating the Southern Ocean response to the southern annular mode (SAM) is examined, using an ocean model run at multiple resolutions from coarse to eddy resolving. The high-resolution versions of the model show an increase in eddy kinetic energy that peaks 2–3 yr after a positive anomaly in the SAM index. Previous work has shown that the instantaneous temperature response to the SAM is characterized by predominant cooling south of 45°S and warming to the north. At all resolutions the model captures this temperature response. This response is also evident in the coarse-resolution implementation of the model with no eddy mixing parameterization, showing that eddies do not play an important role in the instantaneous response. On the longer time scales, an intensification of the mesoscale eddy field occurs, which causes enhanced poleward heat flux and drives warming south of the oceanic Polar Front. This warming is of greater magnitude and occurs for a longer period than the initial cooling response. The results demonstrate that this warming is surface intensified and strongest in the mixed layer. Non-eddy-resolving models are unable to capture the delayed eddy-driven temperature response to the SAM. The authors therefore question the ability of coarse-resolution models, such as those commonly used in climate simulations, to accurately represent the full impacts of the SAM on the Southern Ocean

    Specimen dimensions influence the measurement of material properties in tendon fascicles

    Get PDF
    Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions

    Collisional depolarization of NO(A) by He and Ar studied by quantum beat spectroscopy

    Get PDF
    Zeeman and hyperfine quantum beat spectroscopies have been used to measure the total elastic plus inelastic angular momentum depolarization rate constants at 300 K for NO (A 2 σ+) in the presence of He and Ar. In the case of Zeeman quantum beats it is shown how the applied magnetic field can be used to allow measurement of depolarization rates for both angular momentum orientation and alignment. For the systems studied here, collisional loss of alignment is more efficient than loss of orientation. In the case of NO (A) with He, and to a lesser extent NO (A) with Ar, collisional depolarization is found to be a relatively minor process compared to rotational energy transfer, reflecting the very weak long-range forces in these systems. Detailed comparisons are made with quantum mechanical and quasiclassical trajectory calculations performed on recently developed potential energy surfaces. For both systems, the agreement between the calculated depolarization cross sections and the present measurements is found to be very good, suggesting that it is reasonable to consider the NO (A) bond as frozen during these angular momentum transferring collisions. A combination of kinematic effects and differences in the potential energy surfaces are shown to be responsible for the differences observed in depolarization cross section with He and Ar as a collider. © 2009 American Institute of Physics

    Amplified mid-latitude planetary waves favour particular regional weather extremes

    Get PDF
    Copyright © 2014 Nature Publishing GroupThere has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade [1]. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves [14, 15, 16, 17]. Disproportionately large warming in the northern polar regions compared with mid-latitudes—and associated weakening of the north–south temperature gradient—may favour larger amplitude planetary waves [14, 15, 16, 17], although observational evidence for this remains inconclusive [18, 19, 20, 21]. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.Natural Environment Research Council (NERC
    • 

    corecore