632 research outputs found
Ocean-atmospheric state dependence of the atmospheric response to Arctic sea ice loss
This is the final version of the article. Available from American Meteorological Society via the DOI in this record.The Arctic is warming faster than the global average. This disproportionate
warming – known as Arctic amplification – has caused significant local
changes to the Arctic system and more uncertain remote changes across the
Northern Hemisphere midlatitudes. Here, we use an atmospheric general circulation
model (AGCM) to test the sensitivity of the atmospheric and surface
response to Arctic sea ice loss to the phase of the Atlantic Multidecadal Oscillation
(AMO), which varies on (multi-)decadal timescales. Four experiments
are performed, combining low and high sea ice states with global sea surface
temperature (SST) anomalies associated with opposite phases of the AMO. A
trough-ridge-trough response to wintertime sea ice loss is seen in the PacificNorth
America sector in the negative phase of the AMO. We propose that
this is a consequence of an increased meridional temperature gradient in response
to sea ice loss, just south of the climatological maximum, in the central
midlatitude North Pacific. This causes a southward shift in the North Pacific
storm track, which strengthens the Aleutian Low with circulation anomalies
propagating into North America. While the climate response to sea ice loss
is sensitive to AMO-related SST anomalies in the North Pacific, there is little
sensitivity to larger magnitude SST anomalies in the North Atlantic. With
background ocean-atmospheric states persisting for a number of years, there
is the potential to improve predictions of the impacts of Arctic sea ice loss on
decadal timescalesThis work was supported by the Natural Environment Research Council
grants NE/M006123/1 and NE/J019585/1. The HadGAM2 simulations were performed on the
ARCHER UK National Supercomputing Service. For the provision of observed and reanalysis
data the Met Office Hadley Centre and NOAA ESRL are thanked. Model data are available from
the authors upon request
Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability
The pace of Arctic warming is about double that at lower latitudes – a robust phenomenon known as Arctic amplification (AA)1. Many diverse climate processes and feedbacks cause AA2-7, including positive feedbacks associated with diminished sea ice6,7. However, the precise contribution of sea-ice loss to AA remains uncertain7,8. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime AA appears dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase, relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline9,10 is greater (reduced) during periods of negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.J.A.S. was funded by a UK Natural Environment Research Council (NERC) grants NE/J019585/1 and NE/M006123/1. J.A.F. was supported by an NSF/ARCSS grant (1304097) and NASA grant (NNX14AH896). The model simulations were performed on the ARCHER UK National Supercomputing Service. We thank the NOAA ESRL and Met Office Hadley Centre for provision of observational and reanalysis data sets. We also thank D. Ackerley for helping to diagnose the cause of model crashes, C. Deser for commenting on the manuscript prior to submission, and two anonymous reviewers for constructive criticism
Recommended from our members
The dynamics of temperature extremes
Changes in the occurrence of atmospheric circulation patterns are not well understood. A study finds that these have been a big factor in observed changes in regional temperature extremes during recent decades
Recommended from our members
The influence of weather regimes on European renewable energy production and demand
The growing share of variable renewable energy increases the meteorological sensitivity of power systems. This study investigates if large-scale weather regimes capture the influence of meteorological variability on the European energy sector. For each weather regime, the associated changes to wintertime -mean and extreme- wind and solar power production, temperature-driven energy demand and energy shortfall (residual load) are explored. Days with a blocked circulation pattern, i.e. the Scandinavian Blocking and NAO negative regimes, on average have lower than normal renewable power production, higher than normal energy demand and therefore, higher than normal energy shortfall. These average effects hide large variability of energy parameters within each weather regime. Though the risk of extreme high energy shortfall events increases in the two blocked regimes (by a factor of 2.0 and 1.5, respectively), it is shown that such events occur in all regimes. Extreme high energy shortfall events are the result of rare circulation types and smaller-scale features, rather than extreme magnitudes of common large-scale circulation types. In fact, these events resemble each other more strongly than their respective weather regime mean pattern. For (sub-)seasonal forecasting applications weather regimes may be of use for the energy sector. At shorter lead times or for more detailed system analyses, their ineffectiveness at characterising extreme events limits their potential
Arctic cut-off high drives the poleward shift of a new Greenland melting record
Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting
melting in the south, where new melting records were set over the past decade
Specialization of tendon mechanical properties results from interfascicular differences
Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage
High Latitude Dynamics of Atmosphere-Ice-Ocean Interactions
Dynamics of atmosphere–ice–ocean interactions in the high latitudes. What: Scientists from 13 countries involved with modeling and observing the coupled high-latitude weather and climate system discussed our current understanding and challenges in polar prediction, extreme events, and coupled processes on scales ranging from cloud and turbulent processes, from micrometers and a few hundred meters to processes on synoptic-scale weather phenomena and pan-Arctic energy budgets of hundreds to thousands of kilometers. Workshop participants also evaluated research needs to improve numerical models with usages spanning from uncoupled to fully coupled models used for weather and climate prediction (http://highlatdynamics.b.uib.no/). When: 23–27 March 2015. Where: Rosendal, Norwa
Recommended from our members
Seasonal to interannual Arctic sea-ice predictability in current GCMs
We establish the first inter-model comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea-ice extent and volume, there is potential predictive skill for lead times of up to three years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea-ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea-ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea-ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate
Complete breeding failures in ivory gull following unusual rainy storms in North Greenland
Natural catastrophic events such as heavy rainfall and windstorms may induce drastic decreases in breeding success of animal populations. We report the impacts of summer rainfalls on the reproductive success of ivory gull (Pagophila eburnea) in north-east Greenland. On two occasions, at Amdrup Land in July 2009 and at Station Nord in July 2011, we observed massive ivory gull breeding failures following violent rainfall and windstorms that hit the colonies. In each colony, all of the breeding birds abandoned their eggs or chicks during the storm. Juvenile mortality was close to 100% at Amdrup Land in 2009 and 100% at Station Nord in 2011. Our results show that strong winds associated with heavy rain directly affected the reproductive success of some Arctic bird species. Such extreme weather events may become more common with climate change and represent a new potential factor affecting ivory gull breeding success in the High Arctic
Arctic change and possible influence on mid-latitude climate and weather: a US CLIVAR White Paper
The Arctic has warmed more than twice as fast as the global average since the mid 20th century,
a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system
have coincided with a period of ostensibly more frequent events of extreme weather across the
Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent
severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high
latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH,
started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially
in Northern Eurasia.
The possible link between Arctic change and mid-latitude climate and weather has spurred a rush
of new observational and modeling studies. A number of workshops held during 2013-2014 have
helped frame the problem and have called for continuing and enhancing efforts for improving
our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme
climate and weather events. Although these workshops have outlined some of the major challenges
and provided broad recommendations, further efforts are needed to synthesize the diversified
research results to identify where community consensus and gaps exist.
Building upon findings and recommendations of the previous workshops, the US CLIVAR Working
Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an
international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts
in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving
state of understanding, identify consensus on knowledge and gaps in research, and develop specific
actions to accelerate progress within the research community. With more than 100 participants,
the workshop was the largest and most comprehensive gathering of climate scientists to address
the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and
activities involving many of the working group members
- …
