42 research outputs found

    Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    Get PDF
    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Contribution of oxic methane production to surface methane emission in lakes and its global importance

    Get PDF
    Recent discovery of oxic methane production in sea and lake waters, as well as wetlands demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50 %) of surface methane emission for lakes with surface areas >1 km2

    Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea

    Full text link
    Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol L-1 near-shore and 4 nmol L-1 off-shore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In near-shore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM rich sediments. In off-shore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the Chlorophyll-a spring peak, suggesting that in these OM poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most off-shore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m-2 yr-1 in the most near-shore stations (~4 km from the coast) and 28 mmol m-2 yr-1 in the most off-shore stations (~23 km from the coast), 1,260 to 280 times higher than the open ocean average value (0.1 mmol m-2 yr-1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area

    Temperature, productivity and sediment characteristics as drivers of seasonal and spatial variations of dissolved methane in the near-shore coastal areas (Belgian coastal zone, North Sea)

    Full text link
    multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most nearshore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM replete sediments. In the off-shore stations with permeable sediments with a low OM content, the seasonal cycle of dissolved CH4 concentration showed a yearly peak following the chlorophyll-a spring peak. This suggests that in these OM poor sediments, methanogenesis depended on the delivery to the sediments of freshly produced OM. In both types of sediments, the seasonal cycle of dissolved CH4 concentrations was unrelated the seasonal cycles of DMS, and DMSP, despite the fact that these quantities were very high during the spring Phaeocystis globosa bloom. This suggests that in this shallow coastal environment CH4 production is overwhelmingly related to benthic processes and unrelated to DMS(P) transformations in the water column as recently suggested in several open ocean regions. The annual average CH4 emission was 41 mmol m-2 yr-1 in the most near-shore stations (_4 km from the coast) and 10 mmol m-2 yr-1 in the most off-shore stations (_23 km from the coast), 410-100 times higher than the average value in the open ocean (0.1 mmol m-2 yr-1). The strong control of CH4 concentrations by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular shallow coastal areas, should respond in future to eutrophication and warming of climate. This is confirmed by the comparison of CH4 concentrations at five stations obtained in March in years 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area

    Ethylene and methane in the upper water column of the subtropical Atlantic

    Get PDF
    The vertical distributions of ethylene and methane in the upper water column ofthe subtropical Atlantic were measured along a transect from Madeira to the Caribbean andcompared with temperature, salinity, oxygen, nutrients, chlorophyll-a, and dissolved organiccarbon (DOC).Methane concentrations between 41.6 and 60.7 nL L−1 were found in the upper 20 m ofthe water column giving a calculated average flux of methane into the atmosphere of 0.82 µgm−2 h−1. Methane profiles reveal several distinct maxima in the upper 500 m of the watercolumn and short-time variations which are presumably partly related to the vertical migrationof zooplankton.Ethylene concentrations in near surface waters varied in the range of 1.8 to 8.2 nL L−1.Calculated flux rates for ethylene into the atmosphere were in the range of 0.41 to 1.35 µgm−2 h−1 with a mean of 0.83 µg m−2 h−1. Maximum concentrations of up to 39.2 nL L−1were detected directly below the pycnocline in the western Atlantic. The vertical distributionsof ethylene generally showed one maximum at the pycnocline (about 100 m depth) whereelevated concentrations of chlorophyll-a, dissolved oxygen, and nutrients were also found;no ethylene was detected below 270 m depth. This suggests that ethylene release is mainlyrelated to one, probably phytoplankton associated, source, while for methane, enhanced netproduction occurs at various depth horizons. For surface waters, a simple correlation betweenethylene and chlorophyll-a or DOC concentrations could not be observed. No considerablediurnal variation was observed for the distribution and concentration of ethylene in the upperwater column
    corecore