154 research outputs found

    CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization

    Get PDF
    Although CSP has reached technological maturity, high capital investment and specific electricity cost remain the major development barriers. To reduce them, highly efficient, integrated, and cheaper CSP components are urgently needed. In this paper, we investigate a novel CSP plant configuration with a single-tank Thermal Energy Storage (TES) fully integrated with the steam generator. The objective of this research is twofold: i) provide a reliable model of single-tank thermal storages with integrated steam generator; ii) identify two optimized CSP plant designs to achieve best energetic and economic performances. To achieve these aims we developed a numerical model of the main system components and validated it against experimental data. This model was then integrated in a full simulation and heuristic design optimization of the plant. The results revealed that the system proposed can generate electricity in middle-Italy (Rome) at a cost of 230.25 $/MWh with a 15% reduction compared to the double tank option. Furthermore, if cogeneration is used to recover the waste heat, this system is an interesting option for users such as small districts, university campuses and hospitals. In the latter case, the optimized system pays off in 6 years and covers 80% of the heating and cooling requirements

    Basal and one-month differed neutrophil, lymphocyte and platelet values and their ratios strongly predict the efficacy of checkpoint inhibitors immunotherapy in patients with advanced BRAF wild-type melanoma

    Get PDF
    Background To evaluate the capability of basal and one-month differed white blood cells (WBC), neutrophil, lymphocyte and platelet values and their ratios (neutrophils-to-lymphocytes ratio, NLR, and platelets-to-lymphocytes ratio, PLR) in predicting the response to immune checkpoint inhibitors (ICI) in metastatic melanoma (MM). Methods We performed a retrospective study of 272 BRAF wild-type MM patients treated with first line ICI. Bivariable analysis was used to correlate patient/tumor characteristics with clinical outcomes. Variations between time 1 and time 0 (Delta) of blood parameters were also calculated and dichotomized using cut-off values assessed by ROC curve. Results At baseline, higher neutrophils and NLR negatively correlated with PFS, OS and disease control rate (DCR). Higher PLR was also associated with worse OS. In multivariable analysis, neutrophils (p = 0.003), WBC (p = 0.069) and LDH (p = 0.07) maintained their impact on PFS, while OS was affected by LDH (p < 0.001), neutrophils (p < 0.001) and PLR (p = 0.022), while DCR by LDH (p = 0.03) and neutrophils (p = 0.004). In the longitudinal analysis, PFS negatively correlated with higher Delta platelets (p = 0.039), Delta WBC (p < 0.001), and Delta neutrophils (p = 0.020), and with lower Delta lymphocytes (p < 0.001). Moreover, higher Delta NLR and Delta PLR identified patients with worse PFS, OS and DCR. In the multivariable model, only Delta NLR influenced PFS (p = 0.004), while OS resulted affected by higher Delta WBC (p < 0.001) and lower Delta lymphocytes (p = 0.038). Higher Delta WBC also affected the DCR (p = 0.003). When clustering patients in 4 categories using basal LDH and Delta NLR, normal LDH/lower Delta NLR showed a higher PFS than high LDH/higher Delta NLR (20 vs 5 months). Moreover, normal LDH/higher Delta lymphocytes had a higher OS than high LDH/lower Delta lymphocytes (50 vs. 10 months). Conclusions Baseline and early variations of blood cells, together with basal LDH, strongly predict the efficacy of ICI in MM. Our findings propose simple, inexpensive biomarkers for a better selection of patient treatments. Prospective multicenter studies are warranted to confirm these data. © 2022, The Author(s)

    A Case of Paediatric Sudden Visual Loss

    Get PDF
    Optic neuromyelitis (NMO) is a demienilizing disease traditionally characterized by optic neuritis and transverse myelitis..

    Seventh Cranial Nerve Palsy: The First Sign of Multiple Sclerosis in A Young Children

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system characterized pathologically by demyelination and subsequent axonal degeneration..

    EurA1c: the European HbA1c Trial to Investigate the Performance of HbA1c Assays in 2166 Laboratories across 17 Countries and 24 Manufacturers by Use of the IFCC Model for Quality Targets

    Get PDF
    Background: A major objective of the IFCC Committee on Education and Use of Biomarkers in Diabetes is to generate awareness and improvement of HbA1c assays through evaluation of the performance by countries and manufacturers. Methods: Fresh whole blood and lyophilized hemolysate specimens manufactured from the same pool were used by 17 external quality assessment organizers to evaluate analytical performance of 2166 laboratories. Results were evaluated per country, per manufacturer, and per manufacturer and country combined according to criteria of the IFCC model for quality targets. Results: At the country level with fresh whole blood specimens, 6 countries met the IFCC criterion, 2 did not, and 2 were borderline. With lyophilized hemolysates, 5 countries met the criterion, 2 did not, and 3 were borderline. At the manufacturer level using fresh whole blood specimens, 13 manufacturers met the criterion, 8 did not, and 3 were borderline. Using lyophilized hemolysates, 7 manufacturers met the criterion, 6 did not, and 3 were borderline. In both country and manufacturer groups, the major contribution to total error derived from between-laboratory variation. There were no substantial differences in performance between groups using fresh whole blood or lyophilized hemolysate samples. Conclusions: The state of the art is that 1 of 20 laboratories does not meet the IFCC criterion, but there are substantial differences between country and between manufacturer groups. Efforts to further improve quality should focus on reducing between-laboratory variation. With some limitations, fresh whole blood and well-defined lyophilized specimens are suitable for purpose

    Antamanide, a Derivative of Amanita phalloides, Is a Novel Inhibitor of the Mitochondrial Permeability Transition Pore

    Get PDF
    Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i) permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii) the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii) antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv) abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors

    Mutations in mitochondrial DNA causing tubulointerstitial kidney disease

    Get PDF
    Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe^{Phe}, tRNALeu1^{Leu1} and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe^{Phe} (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe^{Phe}.This study was supported by a Wellcome Trust Senior Investigator Award to PHM [19710], by the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres, and a Medical Research Council Clinical Training Fellowship awarded to TMC. The core facilities at CIMR were funded by a Wellcome Trust strategic award [100140]. PFC is a Wellcome Trust Senior Fellow in Clinical Science [101876/Z/13/Z] within the Medical Research Council Mitochondrial Biology Unit [MC_UP_1501/2]. CMG was supported by The Swedish Medical Research Council and The Knut and Alice Wallenberg Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma

    Get PDF
    Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics
    • …
    corecore