167 research outputs found

    Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    The morphological development of step edge patterns in the presence of meandering instability during step flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in good agreement with that obtained from numerical integration of the continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.

    Asymptotic step profiles from a nonlinear growth equation for vicinal surfaces

    Full text link
    We study a recently proposed nonlinear evolution equation describing the collective step meander on a vicinal surface subject to the Bales-Zangwill growth instability [O. Pierre-Louis et al., Phys. Rev. Lett. (80), 4221 (1998)]. A careful numerical analysis shows that the dynamically selected step profile consists of sloped segments, given by an inverse error function and steepening as sqrt(t), which are matched to pieces of a stationary (time-independent) solution describing the maxima and minima. The effect of smoothening by step edge diffusion is included heuristically, and a one-parameter family of evolution equations is introduced which contains relaxation by step edge diffusion and by attachment-detachment as special cases. The question of the persistence of an initially imposed meander wavelength is investigated in relation to recent experiments.Comment: 4 pages, 5 included figures. Typo in Eq.(5) corrected, section headlines added and Ref.[12] update

    A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA

    Get PDF
    Cusanuswerk, who supported D.F. with a stipend. J.D. is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z)

    Evidence for softening of first-order transition in 3D by quenched disorder

    Full text link
    We study by extensive Monte Carlo simulations the effect of random bond dilution on the phase transition of the three-dimensional 4-state Potts model which is known to exhibit a strong first-order transition in the pure case. The phase diagram in the dilution-temperature plane is determined from the peaks of the susceptibility for sufficiently large system sizes. In the strongly disordered regime, numerical evidence for softening to a second-order transition induced by randomness is given. Here a large-scale finite-size scaling analysis, made difficult due to strong crossover effects presumably caused by the percolation fixed point, is performed.Comment: LaTeX file with Revtex, 4 pages, 4 eps figure

    Competing mechanisms for step meandering in unstable growth

    Full text link
    The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with the continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf 41}, 4400 (1990)]. In the presence of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in the two cases, and disagrees with the predictions of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev. Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the deposition flux and with the activation barriers for step adatom detachment and step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The interpretation of recent experiments on surfaces vicinal to Cu(100) [T. Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V correcte

    Short-time dynamics and magnetic critical behavior of two-dimensional random-bond Potts model

    Get PDF
    The critical behavior in the short-time dynamics for the random-bond Potts ferromagnet in two-dimensions is investigated by short-time dynamic Monte Carlo simulations. The numerical calculations show that this dynamic approach can be applied efficiently to study the scaling characteristic, which is used to estimate the critical exponents theta, beta/nu and z for the quenched disorered systems from the power-law behavior of the kth moments of magnetizations.Comment: 10 pages, 4 figures Soft Condensed Matte

    Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries

    Full text link
    We present a numerical study of 2D random-bond Potts ferromagnets. The model is studied both below and above the critical value Qc=4Q_c=4 which discriminates between second and first-order transitions in the pure system. Two geometries are considered, namely cylinders and square-shaped systems, and the critical behavior is investigated through conformal invariance techniques which were recently shown to be valid, even in the randomness-induced second-order phase transition regime Q>4. In the cylinder geometry, connectivity transfer matrix calculations provide a simple test to find the range of disorder amplitudes which is characteristic of the disordered fixed point. The scaling dimensions then follow from the exponential decay of correlations along the strip. Monte Carlo simulations of spin systems on the other hand are generally performed on systems of rectangular shape on the square lattice, but the data are then perturbed by strong surface effects. The conformal mapping of a semi-infinite system inside a square enables us to take into account boundary effects explicitly and leads to an accurate determination of the scaling dimensions. The techniques are applied to different values of Q in the range 3-64.Comment: LaTeX2e file with Revtex, revised versio

    Fairy tale tourism: the architectural projection mapping of magically real and irreal festival lightscapes

    Get PDF
    This paper explores how established light festivals such as the FĂȘte des LumiĂšres in Lyon and Lumiere in Durham were first conceived by Robert-Houdin as illusory illuminations in the Loire in the 1950s. The research investigates the concept of spectacles as inversions of reality; re-situating light works within authenticity theory by exploring their manipulation of magical reality and irreality. The research uses the authors’ experience of event design to assess different interactions of light with the tri-dimensional architectural canvas, suggesting three classifications of animated projection mapping events: architecturally passive, architecturally physically active and architecturally metaphysically active. Each category has implications for how spectators perceive these installations. Architecturally passive events may use fairy tale content, evoking atavistic and affective responses, the ‘skinning’ of buildings with magical reality is designed to evoke perceptual duality, and the wobbling unfolding of irreality may ultimately create a state of ‘illuminated flow.

    Identification of aspirin analogues that repress NF-ÎșB signalling and demonstrate anti-proliferative activity towards colorectal cancer in vitro and in vivo

    Get PDF
    Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-ÎșB pathway. This stimulation was associated with a significant reduction in basal levels of NF-ÎșB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin
    • 

    corecore