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Short-time dynamics and magnetic critical behavior
of the two-dimensional random-bond Potts model
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and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China

Kenji Harada
Department of Applied Analysis and Complex Dynamical Systems, Kyoto University, Kyoto 606-8501, Japan
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The critical behavior in the short-time dynamics for the random-bond Potts ferromagnet in two dimensions
is investigated by short-time dynamic Monte Carlo simulations. The numerical calculations show that this
dynamic approach can be applied efficiently to study the scaling characteristic, which is used to estimate the
critical exponentsd, 8/v, and z, for quenched disordered systems from the power-law behavior oktthe
moments of magnetization.

PACS numbgs): 64.60.Fr, 05.50tq, 75.40.Mg, 64.60.Ht

I. INTRODUCTION of quenched disorder, and the impurities have a particularly
strong effect forg>4, even changing the order of the tran-
An understanding of the effects of quenched impurities orsitions._ _ _ _
the nature of phase transitions is one of the significant sub- In this paper, we discuss the dynamic scaling features of
jects in statistical physics, and it has been a topic of substarihe random-bond Potts moddXBPM) through MC simula-
tial interest for many authors in the last two decaffes9].  tions, to estimate the critical exponents. We consider the
According to the Harris criteriofiL1], quenched randomness important questions of whether there exists an Ising-like uni-
is a relevant perturbation at the second-order critical point€rsality class for the RBPM and how the critical behavior is
when the specific-heat exponenbf the pure system is posi- affected by the introduction of disorder into the pure system
tive. Following the earlier work of Imry and Wort[4], who [17]. Thehlarge—zclzjale MC I’((EjSU“S of CFLhan(?dlr; TEIS] h
argued that a quenched disorder could produce rounding of §/ggest that, in 2D, any random system should belong to the
first-order phase transition and thus indusecond-order pure Ising universality class. These results are also consistent
hase transitions, the introduction of randomness to syste with experiments[12]. In recent paperd7.8], however,
P . ! . y ardy and Jacobsen studied the random-bond Potts models
undergoing a first-order phase transition has been compre

: . ) - Yor several values af with a different approach based on the
hensively considered. It was shown by Hui and Berker W'thconnectivity transfer matrixTM) formalism of Blte and

phenomenological renormalization group arguments thagigntingale [20]. Their estimates of the critical exponents
bond randomness can have a drastic effect on the nature of &4 to a continuous variation @8/v with g, which is in
first-order phase transitiof2], and the feature has been sharp disagreement with the MC results 8 [4,5]. We
placed on a firmer basis with a rigorous proof of vanishing ofhgpe that the resulting critical behavior measured in this pa-
the latent heaf3]. Their theory was numerically checked per will play a role in settling this controversy. Furthermore,
with the Monte CarldMC) method by Chen, Ferrenberg and we will test theshort-time dynami¢STD) MC approach to
Landau(CFL) [4,5], who studied the eight-state Potts model study spin systems with quenched disorder and show its ef-
with random-bond disorder. Experimental evidence has beeficiency with numerical studies, which is also one of the
found in two-dimensional systems that in the order-disordemain aims of this paper.
phase transitions of absorbed atomic layers, the critical ex-
ponents are modified, on the addition of disorder, from the
original four-state Potts model universality class in the pure
case[12,13. On the other hand, no modification is found  The Hamiltonian of the-state Potts model with quenched
when the pure system belongs to the Ising universality clasgandom interactions can be written as
[14]. The theoretical study of such disordered systems is also
an active field where use of intensive MC simulations is
often helpful[10,15-19. —BH=2 Kij0sq, Ki>0, 1)

It is well known that the pure Potts model in two dimen- (oY Y
sions (2D) has a second-order phase transition when the
number of Potts stateg<4 and is first order fog>4. As  where the spiror can take the values 1. . ,q, 8=1/KkgT is
the specific-heat exponent of the pure system is always the inverse temperaturé, is the Kronecker delta function,
positive forq>2, the disorder will be the relevant perturba- and the sum is over all nearest-neighbor pairs on a 2D lattice.
tion for the Potts model. As a result, all the transitions areThe dimensionless couplind§; are selected from two posi-
second order for the 2Q-state Potts models in the presencetive (ferromagnetit values of K; and K,=rK,, with a

Il. MODEL AND METHOD
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strong-to-weak coupling ratio=K, /K called thedisorder  behavior of Eq(4) can be applied to both dynamic exponent

amplitude according to a bimodal distribution, measurements and estimates of the static exponents origi-
nally defined in equilibrium.
P(K)=pdo(K—Kyp)+(1-p)s(K-Kp). 2 We begin our study of the evolution of magnetization in

the initial stage of the dynamic relaxation starting at very
high temperature and small magnetizatiaony(-0). For a
sufficiently large lattice Il —o), from Eg. (4) by settingr
=0, b=t it is easy to derive that

When p=0.5, the system iself-dualand the exact critical
point can be determined froh21]

(eXe—1)(e¥e~1)=q, )

, » M®(t,mg) =t KEr2M (1 t*0/Zmy). (5)
whereK. andK/ are the critical values oK, andKj,, re-
spectively, at the transition point=1 corresponds to the Whenk=1 we get the most important scaling relation on
pure case, the critical point is locatedkat=In(1+/q), and  which our measurements of the critical exponetre based,
the phase transitions are first order fpr 4. With additional
random-bond distribution, however, new second-order phase M(t)~mot?,  8=(xo— Blv)lz. (6)
transitions are induced for anystate Potts model and the o S
new critical points are determined according to E3). for As a result, the magnetization undergoes an initial increase at

different values of disorder amplitudeand state parameter the critical pointK after a microscopic timéq;c. This pre--
q diction is supported by a number of MC investigations which

In this work we chosej=8, which is known to have a have been applied to detect all the static and dynamic critical
strong first-order phase transition, in the hope that we woul@Xponents[23,24 as well as the critical temperatures
find a new second-order phase transition caused by tHe5.31. The advantage of the dynamic MC simulation is that
quenched disorder to show the effect of impurities on thdt may eliminate critical slowing down, since the measure-
first-order system. Several values pfwere used, as in Mments are performed in the early time stages of the evolution
[5’6,1q, to check the |Sing_|ike universa”ty class. To mini- where the Spatial and time correlation |engthS are small.
mize the number of bond configurations needed for the dis- In our simulations, the time evolution &fl(t) is calcu-
order averages, we confined our study to the bond distribuated through the definition
tions in which there are the same number of strong and weak
bonds in each of the two lattice directions. This procedure M (1) = i q<MO>_N}
should reduce the variation between different bond configu- N q-1
rations, with no loss of generality. _ .

We performed our simulations by the STD metfj@2] HereMo=max(M,M;, ... Mg) with M; being the num-
on 2D square lattices with periodic boundary conditions.Per of spins in théth state among states(- - -) denotes the
These dynamic MC simulations have been successfully peﬂnitial configuration averages over independent random num-
formed to estimate the critical temperatuflesand the criti-  ber sequences, ad- - ] the disorder configuration averages
cal exponentw,ﬁ'yy and dynamic exponers for the 2D over quenChed random-bond distributior’$= L2 is the
Ising model[23] and the 2D three-state Potts modia4], = number of spins on this square lattice a8 is chosen.
since for both models there exist second-order phase transi- The susceptibility plays an important role in the equilib-
tions. Recenﬂy this approach has also been extensive|y alﬁl.l.lm Its finite size behavior is often used to determine the
plied to the Fully frustrate® Y model and spin glass systems critical temperature and the critical exponems’ and /v
to study the critical scaling characteristic, which is used td5]- For the STD approach, the time-dependent susceptibility
estimate all the dynamic and static critical expond@s—  (the second moment of the magnetizajiaalso interesting
27). and important. For the random-bond Potts model, the second

Traditionally, it was believed that universality and scaling moment of the magnetization is usually defined as
relations could be found only in the equilibrium stage or 1
long-timeregime. In Ref[28], however, it was discovered @)1y — — 204\ _ 2
that for a magnetic system in states with a very high tem- M) vaI )= (M®)] ®
peraturel > T, suddenly quenched to the critical temperature

@)

TC and then evo|ving according to a dynamics of moAel To Study the Scaling behavior of the second moment of
[29], there emerges a universal dynamic scaling behaviofagnetization, we have to take the initial statesngf=0 to
already within the short-time regime, which satisfies start the relaxation processes. Because the spatial correlation
length at the beginning of the relaxation is small compared
M®(t,7,L,my)=b "MW (b=, b7 b~ 1L, b%om,), with the lattice sizel.9 in the short-time regime of the dy-

(4 namic evolution, the second moment behave$/d9(t,L)

W - o ~L ™9, Then the finite size scaling E@) induces a power-

—T.)/T, is the reduced temperaturg, and v are the well

known static critical exponents, aids a scaling factor. The M@(t)~tY, y=(d—2B8/v)lz 9
variablex,, a new independent exponent, is the scaling di-

mension of the initial magnetizatiamy. This dynamic scal- From a scaling analysis of the spatial correlation function we
ing form is generalized from finite size scaling in the equi-easily realize the nonequilibrium spatial correlation length
librium stages[33]. It is important to note that the scaling &~t2. ThereforeM (?)(t) ~ £(d=26/"),
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TABLE I. The tendency and measured value¥das a function of the disorder amplituddor different
initial my at the critical pointK, on a 64 lattice.

Mg
r 0.06 0.04 0.02 0.01 0 Ko(r)
2 0.31a8) 0.3388) 0.3508) 0.3527) 0.3536) 0.92018521T . ..
5 0.160Q6) 0.2156) 0.2525) 0.2574) 0.2624) 0.51230700. ..
8 0.1065) 0.1674) 0.2084) 0.2163) 0.221(3) 0.36796316 .. . .
10 0.09@4) 0.1463) 0.1933) 0.2013) 0.2033) 0.31265568 . . .

In the above considerations the dynamic relaxation prorandom fixed point regime with the largest value of central
cess was assumed to start from a disordered state or withargec=1.5300(5)[10]. Samples for averages are taken
small magnetizationmy. Another interesting and important over both 300 disorder distribution configurations and about
process is dynamic relaxation from a completely ordered00 independent initial configurations on the square lattices
state. The initial magnetization is located exactly at its fixedL? with L up to 128. Statistical errors are simply estimated
point my= 1, where scaling of the form by performing three groups of averages with different ran-

" Bl op (e WL e dom seed selects for the initial configurations. It should be
MY(t,7,L)=b™**M¥(b™*t,b™"7,b""L) (100  noted that, except foM(t), the measurements ofl A(t)

. ted 301 Thi ling f th th and U(t) are restricted to initial states wititng=0 or my
IS €xpec eq .]' IS scaling form appears the same as Ne_; 1 \ya5 verified that the critical exponents have the same
dynamic scaling one in the long-time regime; however, it is

d 10 be alread lid in th ic sh values as those in the equilibrium lang-timestage of the
now-assumed 1o be already vaid in the rrlllzglcroscoplc S ortr'elaxation[23]. Therefore we can measure these exponents
time regime. For the magnetization itsédf=t* yields, for a

ficiently | latii based on the corresponding scaling relation in the initial
sufficiently farge fattice, stages of the relaxation.

——Blvz —Blvz We start our simulations to verify the power-law scaling
M(t,m)=t M(1t - (1) behavior ofM (t) with several values of disorder amplitude
This leads to a power-law decay behavior of at the critical pointsK¢(r) shown in Table I. The initial
configurations are prepared with small magnetizatiog
M(t,7)=t"%, c¢,=plvz, (12 =0.06-0.01 and exact zero states. In Fig. 1, the time evolu-

tion of the magnetizatioM (t) versus the disorder amplitude
at the critical point ¢=0). The formula can be used to cal- r on a 64 lattice is displayed with a double-logarithmic
culate the critical exponenf8/ v andz. For a small but non- scale. We can easily find that all the curves exhibit the
zero, the power-law behavior will be modified by the scal- power-law behavior predicted by E@6). Thus 6 can be
ing function M(1t #"*?7), which has been used to estimated from the slopes of the curves. The values as a
determine the critical temperaturgl,32. Furthermore, by function of the disorder amplitudefor small initial magne-

introducing a Binder cumulant tization my are presented in Table I.
We then setmy=0 to measure the second moment of
B M@)(t,L) magnetization. Power-law behavior of the second moment
u(t,L)= ML (13 Mm@t) is observed in Fig. 2, where the curves for different
a similar power-law behavior at the critical point induced ©°1 ' T
from the scaling Eq(10) shows that cTTares
—r=10
U(t,L)~t%, c,=d/z, (14

on a large enough lattice. Here, unlike the relaxation from
the disordered state, the fluctuations caused by the initiaggs
configurations are much smaller. In practical simulations,g
these measurements of the critical exponents and critica
temperature are better in quality than those from the realiza:
tion process starting from disordered states.

IIl. MC SIMULATIONS AND RESULTS

Since it has been pointed out that the heat-bath algorithir ,
is more efficient than the Metropolis algorithm in the STD 10 100
[24], and universality is satisfied for different algorithms, we HMC swese)
perform the MC simulations only with the heat-bath algo- FIG. 1. The time evolution of magnetization showing thee-
rithm at the critical points of a 2D eight-state RBPM for an pendence o#, plotted on a double-logarithmic scale on a lattice of
optimal disorder amplitude* =10, which is located in the 64x 64 with my=0.01.
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een L= 64
----L=64
sl =128 ——L=128

1
10 . . . L ) 1 10 100 500

10 100
t (MC swee|
t (MC sweep) ¢ P)

FIG. 2. The time evolution of the second moment of magneti-f "FIG.d3. ;’het E)owerl-lt':ltwddecay é)f rgflglnetlzi::on_ startllng frolmt
zation starting from absolute random states, plotted on a doublefu y orf %r; 33 a6e4§<’ &0 € dolnz; 1;3 _l?r_]ng?dr.'t mic sca;fe ‘t”? a
logarithmic scale on lattices of 3232, 64x 64, and 12& 128. Ices o ’ » an ) € ninite size efiect I1s

obvious when the lattice side<<64.

lattice sizes are plotted. Again, they present a very nice 5 o
power-law increase. Values of scaling dimensipr(d ~ M(t), M®)(t), and U(t) on double-logarithmic scales by

—2B1v)/z determined from slopes of the curves during least squares fits.
=[10,20Q are listed in Table II. Our work shows that for the RBPM there exists a power-

We further setmy=1 to observe the evolution of the law behavior, which is a typical feature of a continuous
magnetization and the Binder cumulant; both should showhase transition in STD processes. Theependence char-
power-law behavior as predicted by Ed2) and Eq.(14). acteristics of the dynamic exponefigives evidence that the
Their curves are plotted in Figs. 3 and 4, respectively. Thélynamic MC behavior is different from that of the pure Ising
values of the scaling dimensiong= 8/vz andc,=d/zwere ~ Model, and the values of the magnetic exponght in our
then estimated and are shown in Table Il. Now the results fofalculation seem to be the same as those given by the TM
y, ¢,=plvz, andc,=d/z can be used to estimate the criti- formula[8], but not those by given by CFL. For the apparent
cal exponents/v, which is also presented in Table II. For Mo dependence of) we argue that the effect of=(x,
comparison, also listed in Table Il are the corresponding re= 8/v)/z on the initial magnetizatiom, is due to the fact
sults for the scaling dimension for the Ising aget 3 Potts  that the scaling dimensiox, is determined by a critical char-

models on 2D(3D) square(cubid lattices, and in Table Il acteristic functiony(b,mg) =b*®M)m,, which is a non-
we summarize the results for the critical exponght up to  trivial function of my and shows an off-fixed-point correction
the present. for the exponen® whenm, deviates from the fixed point of

In conclusion, this study presents numerical evidence that
the quenched impurities in the RBPM can induce second-

In this paper we have investigated the short-time criticalorder phase transitions, but they appear not always to belong
dynamics of the random-bond Potts model on 2D lattices tdo the Ising-like universality class, although the result for the
verify whether it has a second-order phase transition in theritical exponen® is the same for both the=10 RBPM and
Ising-like universality class. Dynamic scaling behavior wasthe Ising model within the error bars by present calculations.
found, and has been used to estimate the critical exponen&econd, as the effect of critical slowing down in the equilib-
0, z, andB/v. Our main results are summarized in Table II; rium stage for the RBPM is more severe than that for pure
they are obtained from the slopes of power-law curves fosystems, cluster algorithms have been frequently used up to

IV. SUMMARY AND CONCLUSION

TABLE Il. The values of scaling exponents for the 2p-8 RBPM with r=10, measured from the
scaling functiongvi (t), M(@)(t), andU(t), respectively, starting from both random initial states and ordered
states. Also listed are those for the 2D Ising apel3 Potts models, and the 3D Ising mod2p,24,32.

Exponent mg 2D RBPM 2D lIsing 2D Potts 3D Ising
0 ~0.0 0.1974) 0.191(1) 0.0753) 0.1082)
y=(d—2B/v)/z 0.4386) 0.8177) 0.7881)
c1=pBlvz =1.0 0.03906) 0.0561) 0.0651) 0.25337)
c,=d/z 0.5189) 0.9268) 0.9349) 0.146212)
2Blv=d-yz 0.3026) 0.24036) 0.2697) 1.0344)

2B/v (exac) 1/4 4/15
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' TABLE Ill. Results for the magnetic scaling exponedity es-

w0t poo e 1 timated by different methods for the 2D eight-state RBPM.
I ——L=128
I Reference r Blv Technique
o CFL [4] 2 01182 MC
Cardy and Jacobsd®] 2 0.1424) ™
Chatelain and Berchi] 10 0.1533) MC
Olson and Yound17] 0.15463) MC
Picco[35] 10 0.1531) MC
Present work 10 0.1%3) STD

the dependence of the dynamic critical exponght on the

state parametay and the disorder amplitudeby systematic

simulations using the STD method in order to clarify the

crossover behavior from the random fixed point to a perco-
FIG. 4. The time evolution of the Binder cumulant starting from lationlike limit [35]. This is being studied at present.

fully ordered states, plotted on a double-logarithmic scale on lat-

tices of 32<32, 64X 64, and 12& 128.

1
50 100
t (MC sweep)
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