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The morphological development of step edge patterns in the presence of meandering instability during step
flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that
the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step
profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more
flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in
good agreement with that obtained from numerical integration of the continuum theory.

DOI: 10.1103/PhysRevB.65.041404 PACS number~s!: 68.35.Fx, 68.55.2a, 81.15.Hi

Epitaxial growth on vicinal surfaces is known to give rise
to interesting growth instabilities under suitable conditions,
e.g., to step bunching, mound formation, and meandering of
the step edges.1 The meandering instability emerges when
the interlayer mass transport from the upper side of the step
is reduced due to the Ehrlich-Schwoebel barrier2 enhancing
growth of protrusions at the step edges. This is now known
as the Bales-Zangwill instability~BZI! ~Ref. 3! which tends
to destabilize the ledge morphology due to terrace diffusion
and asymmetric interlayer crossing. There is no diffusion
along the ledges in BZI. However, recently it was found that
in the case of 111 dimensional growth there is an analogous
phenomenon due to thekink Ehrlich-Schwoebel barrierfor
going around a kink site at the step edge. The corresponding
kink Ehrlich-Schwoebel effect~KESE! leads to growth of
unstable structures at the step edges with a dynamically se-
lected wavelength.4 The ledge instabilities were originally
found and reported experimentally on the Cu~1,1,17! vicinal
surface5 but attributed to the BZI scenario. More recent STM
experiments on the Cu~1,1,17! surface proposed that the for-
mation of the regular patterns is due to the KESE.6 Since
then theoretical studies of the meandering instability have
shown that the KESE indeed supersedes the BZI in the for-
mation of the periodic patterns4,7,8 and eventually leads to an
in-phase motion of the step edge structures.7,8

Instability and wavelength selection of the step edge pat-
terns due to the KESE have been studied within the frame-
work of a continuum step model,4 the solid-on-solid~SOS!
lattice model,8,9 and semi-realistic Monte Carlo~MC!
simulations.7 In particular, in the recent MC work7 it was
shown that on vicinal Cu(1,1,m) surfaces the observed insta-
bility is due to the KESE and the competing BZI is of no
importance in the length and time scales considered. The role
of dimer nucleation in determining the selected wavelength
was confirmed, in good agreement with the theoretical scal-
ing relation10 and more recent SOS simulations.8 In the MC
simulations, there was evidence of phase locking of the ledge
structures at the largest coverages studied, but this was not
quantitatively confirmed.

Regarding the step morphologies, a triangular shape has
been predicted to occur for a strong KESE and a rounded,

more flat shape for a weak KESE.4 However, the MC simu-
lations of Ref. 7 indicate that in the case of a strong KESE
there is in fact an interesting shape transition from narrow,
somewhat triangular shapes in the initial stage of growth to
more rounded patterns in the large coverage regime. More-
over, the MC simulations of Ref. 7 and SOS model results of
Ref. 8 are in disagreement with asymptotic evolution of the
step profiles as predicted by the continuum theories.11,12 In
this work we study the ledge morphologies of growing steps
on the vicinal Cu(1,1,m) surfaces in detail. In particular, we
study the onset of the in-phase growth and the phase-locking
of the step profiles in the presence of a strong KESE. Our
results show that the ledge morphologies assume an invariant
shape due to an interplay between various mass transport
currents and phase-locking of the steps. We show how the
ledge profiles from the MC simulations can be reproduced by
explicitly including the relevant mass transport currents on
the surface. On a continuum level this indicates a delicate
balance between the various currents that determines and sta-
bilizes the invariant ledge shapes.

The model system used here is as in Ref. 7, based on MC
simulations of a lattice gas model with energetics from the
effective medium theory~for more details, see Refs. 7 and
13!. Our MC method is efficient enough to simulate growth
of Cu up to ten monolayers~ML ! under realistic temperature
and flux conditions. The temperature range explored here
wasT52402310 K and the fluxF533102321.0 ML/s.
Thus the ratio between the terrace diffusion and the flux
D/F'63105293107 in units of the lattice constanta
50.255 nm,corresponds to a typical molecular beam epi-
taxy regime.14 The energetics of the model also specify the
important length scales controlling step flow growth. These
are l c , the length scale for dimer nucleation at the step
edge,10 and the kink Schwoebel length4 l s5exp@(Es
2Ed)/kBT#21 which is related to the energy barriersEs
50.52 eV andEd50.26 eV for jumps around a kink site
and along a straight edge, respectively. For the close packed
@110# ledges,l s.104 and l c.102 around room temperature
corresponding to strong KESE.4,8,11 In Ref. 7 it was shown
that the wavelength of the step edge patterns is given byl c
5(12Ds /FL)a, Ds being the adatom diffusion constant
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along the straight edge, with a scaling exponenta'0.23, and
an effective barrier ofEeff575610 meV. Both are in good
agreement with the exact values which givea51/4 ~Ref. 10!
andEeff5Ed/4565 meV, respectively. Our previous study7

was done on a Cu~1,1,17! surface but we have checked the
results also with smaller terrace widths.

Simulation results for the step edge profiles on Cu~1,1,17!
are shown in Figs. 1~a!–1~c! after deposition ofu50.4,2.0,
and 10.0 ML, respectively, atT5300 K with F56
31022 ML/s. In the beginning of growth@Fig. 1~a!# the
shape of the patterns is somewhat triangular as predicted for
a relatively strong KESE.11 The meandering structures are
not yet completely in the same phase indicating that the dif-
fusion field has not yet coupled the subsequent step edge
trains, a typical feature for KESE dominated meandering.8

However, a selection of the relatively well-defined wave-
length for all ledges is apparent already at this stage of
growth.7 At larger coverages the meandering of steps begins
gradually to phase-lock, seen in Fig. 1~b!, and in-phase
growth and phase-locking seem complete at largest studied
coverage of 10 ML shown in Fig. 1~c!. However, now the
average shape of the patterns is clearly different from that at
low coverages. The shape of the average patterns is more
rounded, as predicted for a weak KESE. In Fig. 1~d! we
show this change by comparing average ledge profiles after
0.4 and 2.0 ML, respectively.15

From Fig. 1 it is clear that there is no coarsening of the
structures when the coverage is large enough. The steady
state pattern shape seems to be governed by geometric con-
straints which is a sign of asymmetry of the growth rates

between bottom and top parts of the steps. This asymmetry is
a general feature in many models of step growth with or
without coarsening.16,17 Moreover, a quantitative inspection
of the patterns at larger coverages suggests that the profiles
have an invariant shape. This can be seen by examining the
nth lateral momentsMn(u)5^z i(x,u)xn& i ,x of the meander
periodsz i(x,u), shown in Fig. 2~a!. The scaled even mo-
ments approach their steady state values already atu
'2 ML. The patterns are still changing, however, which
can be seen from the roughness of the stepw(u)
5A^z(x,u)2&x, wherez(x,u) is the step profile. It does not
show any sign of saturation up to the largest coverage in the
simulations. Instead the roughness followsw(u);ub, with
b'0.3 as shown in Fig. 2~b!. It is interesting to note that
although the roughness does not saturate the shape of the
periodic structures attains an invariant form.

Our simulation results show that the profile shape is rather
insensitive to deposition and temperature conditions. This
suggests that the invariant shape is not dependent on the
relative magnitudes of the various diffusion processes but
rather is a result of geometric constraints due to crowding
and in-phase evolution of the step edges. In order to justify
this assumption we compare the MC profiles with continuum
profiles which are obtained as stationary solutions to the dy-
namic equation] tz52]xJtot , whereJtot is the total mass
current at the step edge. The most important partial currents
which we take into account in the total current here, when
expressed in terms of the variable m(x)
5(]xz)/A11(]xz)2 and appropriately scaled, are the mass
current due to the destabilizing strong KESE~Ref. 4!

Jk5
m~A12m22umu!A12m2

~ umu1Lc
21A12m2!2

, ~1!

FIG. 1. Snapshots of typical ledge profiles with step orientations
in the close packed@110# direction at T5300 K with F58
31022 ML/s for coveragesu50.4,2.0, and 10.0, in Figs.~a!–~c!
~lateral and vertical scales are 1000a and 70 a, respectively!. In
~d! the shape transition is shown. The profiles have been obtained
by averaging over the meander periods atu50.4 ML ~circles! and
at u52.0 ML ~squares!. The horizontal direction is scaled with the
wavelengthl5120a and in the vertical direction with the rough-
nessw51.4a and w55.6a for coverages 0.4 ML and 2.0 ML,
respectively.

FIG. 2. ~a! Lateral momentsMn of the step meander periods
(n52,4,6,8,10 from top to bottom! as a function of coverage in a
semi-logarithmic scale. The moments approach constant values al-
ready before 2.0 ML.~b! Width w of the profiles as a function of the
coverage. No saturation is observed up to 10 ML. The slope of the
solid line corresponds tob51/3.
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the stabilizing current due to the Gibbs-Thomson effect and
edge diffusion11,12,18

Je5
2DSG̃

F SA12m21
DL

DSL D ~]xxm!A12m2, ~2!

the current into the step edge from the deposition flux11,12,18

Jd5LmA12m2, ~3!

and the front-back symmetry breaking current12,16

JSB52
DSG̃L

F
~]xm!~]xxm!A12m21

L2

3
m~]xm!~32m2!.

~4!

In these expressionsL is the terrace width,DS is the macro-
scopic diffusion constant on the terrace,DL is the macro-
scopic diffusion constant along the step edge, andG̃ is the
step stiffness~see Refs. 12 and 19 for the definitions and
experimental values of the parameters, respectively!. All
length scales are given in the units of the lattice constant. By
requiring the condition of stationarity

Jtot[Jk1Je1Jd1JSB50, ~5!

we obtain a second-order differential equation form(x). The
stationary profiles are obtained by solving Eq.~5! numeri-
cally for given initial conditionsm(61)56m0.20

The stationary solution is found using the valuem0
'0.97 as the boundary condition in order to match the end
points with the slopes of the patterns obtained from the MC
simulations.21 The other parameter values of the integration
are based on known energetics of Cu, yieldingl c5700
21600, l s523104223105, DL /(DSL)52502700, and
DSG̃/F50.524000 in the rangeT52402300 K and F
533102321021 ML/s. For the step stiffness we used the
expressionG̃5exp@Ek /kBT#/2, whereEk50.13 eV is the kink
energy.22 In all cases we setL510 for the terrace width. The
resulting profiles are shown in Fig. 3 with various values of
the parameters. The shape is rather independent of the details
of the currents in agreement with simulations. In Fig. 3 the
average shapes obtained from the simulations are plotted
with a few different flux rates. In the inset we show how the
resulting profile deviates from the complete one when each
of the mass currents is forced to be small.

In Fig. 4 we show the mass currents using the integrated
profile as an input. It is now seen that for the invariant profile
there is a delicate compensation of the currents, the Gibbs-
Thomson current compensated by the sum of the KESE, the
deposition, and the symmetry breaking currents. This com-
pensation happens for the specific shape of the profile, and
cannot take place, e.g., in the case of a triangular shaped
profile as obtained in the initial stages of growth. In determi-
nation of the stationary profile shape the front-back symme-
try breaking and the geometric constraints contained implic-
itly in the initial conditions are crucial.

In summary, the MC~Ref. 7! and the SOS~Ref. 8! simu-
lations have proven that the KESE is the dominant mecha-

nism behind the meandering instability and that it leads to
the selection of the dominant wavelength determined by
dimer nucleation at step edges. In this work we have shown
that the KESE also induces an invariant shape of the step
profiles during in-phase growth. This occurs even though the
overall roughness of the step structuresw(u) shows no signs
of saturation. The value of the corresponding scaling expo-
nentb'0.3 is consistent with the case of an isolated step.23

The SOS model gives for the strong KESE an exponentb
'0.57,4 while for a collection of steps in the phase-locking

FIG. 3. The average shape of the step patterns atT5300 K and
u58.0 ML with F5631022 ML/s ~squares!. Changing the tem-
perature or the flux as described in the text does not have any
effects within the error bars. The solid line is the stationary profile
obtained by integration of Eq.~5!. Good agreement between the
average and the integrated profiles is evident. The inset displays the
relative differences of the profiles,D5(zall2z i)/zall , wherezall is
the profile with all currents included, andi 5k,e,SB denotes the
solution with only a small contribution for the KESE current from
the Gibbs-Thomson and symmetry breaking currents, respectively
~from top to bottom in the inset!.

FIG. 4. The mass currents Eqs.~1!–~4! are shown using the
integrated profile as an input. Note the difference between the ver-
tical scales for~c! and ~d!.
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regime b51/2.11,12,18 This puzzling behavior of dynamical
scaling is apparently related to the strict in-phase growth and
consequent formation of the invariant shape of the profile.
The fact that the shape remains invariant although the rough-
ness does not show any sign of saturation indicates a subtle
coupling of the step edge currents with the stationary mor-
phology. By numerically integrating the continuum equation
we have shown how the interplay between various surface
currents determines the invariant step shapes.
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