423 research outputs found
Changes in extreme, cold-season synoptic precipitation events under global warming
We analyze regional climate model (RCM) simulations of daily, spatially distributed extreme precipitation events, using co-operative network observations and output from 10-year RCM simulations of present and future-scenario climates. We examine an Upper Mississippi River Basin region during October–March for daily amounts that exceed the 99.95th percentile and that occur simultaneously at several observation sites or model grid points. For the observations and each simulation, nearly all such extreme regional events occur when a slow moving, cut-off-low system develops over the Rockies and Great Plains and steadily pumps moisture into the Upper Mississippi region from the Gulf of Mexico. The threshold for the extreme events increases in the future scenario by an amount similar to the increase in saturation specific humidity. The results suggest robust circulation behavior for such extremes in the face of climate change
Structure of a Novel Shoulder-to-Shoulder p24 Dimer in Complex with the Broad-Spectrum Antibody A10F9 and Its Implication in Capsid Assembly
10.1371/journal.pone.0061314PLoS ONE84
Distinct Effects of Two HIV-1 Capsid Assembly Inhibitor Families That Bind the Same Site within the N-Terminal Domain of the Viral CA Protein
The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action
Effects of Anesthetic Agents on Brain Blood Oxygenation Level Revealed with Ultra-High Field MRI
During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation
Extreme genetic fragility of the HIV-1 capsid
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts
BACKGROUND:
Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data.
METHODS:
In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets.
RESULTS:
Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters.
CONCLUSIONS:
PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts
The p12 Domain Is Unstructured in a Murine Leukemia Virus p12-CAN Gag Construct
The Gag polyproteins of gammaretroviruses contain a conserved p12 domain between MA and CA that plays critical roles in virus assembly, reverse transcription and nuclear integration. Here we show using nuclear magnetic resonance, that p12 is unstructured in a Moloney murine leukemia virus (MMLV) Gag fragment that includes the N-terminal domain of CA (p12-CAN). Furthermore, no long range interactions were observed between the domains, as has been previously predicted. Flexibility appears to be a common feature of Gag “late” domains required for virus release during budding. Residues near the N-terminus of CAN that form a β-hairpin in the mature CA protein are unfolded in p12-CAN, consistent with proposals that hairpin formation helps trigger capsid assembly
Serum Potassium and Risk of Death or Kidney Replacement Therapy in Older People With CKD Stages 4-5: Eight-Year Follow-up
Rationale & Objective: Hypokalemia may accelerate kidney function decline. Both hypo- and hyperkalemia can cause sudden cardiac death. However, little is known about the relationship between serum potassium and death or the occurrence of kidney failure requiring replacement therapy (KRT). We investigated this relationship in older people with chronic kidney disease (CKD) stage 4-5. Study Design: Prospective observational cohort study. Setting & Participants: We followed 1,714 patients (≥65 years old) from the European Quality (EQUAL) study for 8 years from their first estimated glomerular filtration rate (eGFR) < 20 mL/min/1.73 m2 measurement. Exposure: Serum potassium was measured every 3 to 6 months and categorized as ≤3.5, >3.5-≤4.0, >4.0-≤4.5, >4.5-≤5.0 (reference), >5.0-≤5.5, >5.5-≤6.0, and >6.0 mmol/L. Outcome: The combined outcome death before KRT or start of KRT. Analytical Approach: The association between categorical and continuous time-varying potassium and death or KRT start was examined using Cox proportional hazards and restricted cubic spline analyses, adjusted for age, sex, diabetes, cardiovascular disease, renin-angiotensin-aldosterone system (RAAS) inhibition, eGFR, and subjective global assessment (SGA). Results: At baseline, 66% of participants were men, 42% had diabetes, 47% cardiovascular disease, and 54% used RAAS inhibitors. Their mean age was 76 ± 7 (SD) years, mean eGFR was 17 ± 5 (SD) mL/min/1.73 m2, and mean SGA was 6.0 ± 1.0 (SD). Over 8 years, 414 (24%) died before starting KRT, and 595 (35%) started KRT. Adjusted hazard ratios for death or KRT according to the potassium categories were 1.6 (95% CI, 1.1-2.3), 1.4 (95% CI, 1.1-1.7), 1.1 (95% CI, 1.0-1.4), 1 (reference), 1.1 (95% CI, 0.9-1.4), 1.8 (95% CI, 1.4-2.3), and 2.2 (95% CI, 1.5-3.3). Hazard ratios were lowest at a potassium of about 4.9 mmol/L. Limitations: Shorter intervals between potassium measurements would have allowed for more precise estimations. Conclusions: We observed a U-shaped relationship between serum potassium and death or KRT start among patients with incident CKD 4-5, with a nadir risk at a potassium level of 4.9 mmol/L. These findings underscore the potential importance of preventing both high and low potassium in patients with CKD 4-5. Plain-Language Summary: Abnormal potassium blood levels may increase the risk of death or kidney function decline, especially in older people with chronic kidney disease (CKD). We studied 1,714 patients aged ≥65 years with advanced CKD from the European Quality (EQUAL) study and followed them for 8 years. We found that both low and high levels of potassium were associated with an increased risk of death or start of kidney replacement therapy, with the lowest risk observed at a potassium level of 4.9 mmol/L. In patients with CKD, the focus is often on preventing high blood potassium. However, this relatively high optimum potassium level stresses the potential importance of also preventing low potassium levels in older patients with advanced CKD
- …