1,463 research outputs found

    Artesunate – amodiaquine combination therapy for falciparum malaria in young Gabonese children

    Get PDF
    BACKGROUND: Artesunate-amodiaquine combination for the treatment of childhood malaria is one of the artemisinin combination therapies (ACTs) recommended by National authorities in many African countries today. Effectiveness data on this combination in young children is scarce. METHODS: The effectiveness of three daily doses of artesunate plus amodiaquine combination given unsupervised (n = 32), compared with the efficacy when given under full supervision (n = 29) to children with falciparum malaria were assessed in an unrandomized study. RESULTS: 61 patients analysed revealed a PCR-corrected day-28 cure rate of 86 % (25 of 29 patients; CI 69 – 95 %) in the supervised group and 63 % (20 of 32 patients; CI 45 – 77 %) in the unsupervised group. The difference in outcome between both groups was statistically significant (p = 0.04). No severe adverse events were reported. CONCLUSION: The effectiveness of this short course regimen in young children with falciparum malaria could be augmented by increased adherence and improved formulation

    The Bloom Clock for Causality Testing

    Full text link
    Testing for causality between events in distributed executions is a fundamental problem. Vector clocks solve this problem but do not scale well. The probabilistic Bloom clock can determine causality between events with lower space, time, and message-space overhead than vector clock; however, predictions suffer from false positives. We give the protocol for the Bloom clock based on Counting Bloom filters and study its properties including the probabilities of a positive outcome and a false positive. We show the results of extensive experiments to determine how these above probabilities vary as a function of the Bloom timestamps of the two events being tested, and to determine the accuracy, precision, and false positive rate of a slice of the execution containing events in the temporal proximity of each other. Based on these experiments, we make recommendations for the setting of the Bloom clock parameters. We postulate the causality spread hypothesis from the application's perspective to indicate whether Bloom clocks will be suitable for correct predictions with high confidence. The Bloom clock design can serve as a viable space-, time-, and message-space-efficient alternative to vector clocks if false positives can be tolerated by an application

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    Molecular motors robustly drive active gels to a critically connected state

    Full text link
    Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, where molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behavior occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we develop a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages, 8 figure

    Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern

    Get PDF
    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. He and H B were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januåria, Urucuia, Rio Vermelho and CaetÊ and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Όst and θB values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species

    TOI-3235 b: A Transiting Giant Planet around an M4 Dwarf Star

    Get PDF
    We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry and confirmed with radial velocities from ESPRESSO and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665 ± 0.025 M J and a radius of 1.017 ± 0.044 R J. It orbits close to its host star, with an orbital period of 2.5926 days but has an equilibrium temperature of ≈ 604 K, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939 ± 0.0030 M ☉, a radius of 0.3697 ± 0.0018 R ☉, an effective temperature of 3389 K, and a J-band magnitude of 11.706 ± 0.025. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M dwarfs for atmospheric characterization

    Multiple Crimean-Congo Hemorrhagic Fever Virus Strains Are Associated with Disease Outbreaks in Sudan, 2008–2009

    Get PDF
    The tick-borne virus which causes the disease Crimean-Congo hemorrhagic fever (CCHF) is known to be widely distributed throughout much of Africa, Southern Europe, the Middle East, Central Asia, and Southern Russia. Humans contract the virus from contact with infected people, infected animals (which do not show symptoms), and from the bite of infected ticks. CCHF was recently recognized in the Sudan when several hospital staff and patients died from the disease in a rural hospital. The genetic analysis of viruses associated with the 2008 and 2009 outbreaks shows that several CCHF viral strains currently circulate and cause human outbreaks in the Sudan, highlighting CCHF virus as an emerging pathogen. The Sudanese strains are similar to others circulating in Africa, indicating movement of virus over large distances with introduction and disease outbreaks in rural areas possible. Understanding the epidemiology of zoonotic diseases such as CCHF is especially important in the Sudan given the large numbers of livestock in the country, and their importance to the economy and rural communities. It is imperative that hospital staff consider CCHF as a possible disease agent, since they are at a high risk of contracting the disease, especially in hospitals with limited medical supplies

    A Common Role for Various Human Truncated Adenomatous Polyposis Coli Isoforms in the Control of Beta-Catenin Activity and Cell Proliferation

    Get PDF
    The tumour suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancer cases, leading to the synthesis of truncated APC products and the stabilization of β-catenin. Truncated APC is almost always retained in tumour cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis covering most of the mutation cluster region (MCR). The consequences on proliferation in vitro, tumour formation in vivo and the level and transcriptional activity of β-catenin have been investigated. Down-regulation of truncated APC results in an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of β-catenin in 5 out of 6 cell lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5) with an up-regulation of β-catenin levels, indicating that truncated APC can still modulate wnt signalling through controlling the level of β-catenin. This control can happen even when truncated APC lacks the β-catenin inhibiting domain (CiD) involved in targeting β-catenin for proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell proliferation, possibly by adjusting β-catenin signalling to the “just right” level

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore