275 research outputs found

    Better safe than sorry: Non-stomatal mechanisms delay drought stress and hydraulic failure in Scots pine saplings

    Get PDF
    Background/Question/Methods There is no more vital connection than the tight linkage between water and organic carbon, and there is no more paradigmatic example for that than plant photosynthesis. In plants, carbon uptake is done at elevated expenses in terms of water transport from soil to the atmosphere. Under limited water supply, transpiration increases the tension of the within-tree water column. This will eventually lead to emboli formation and loss of hydraulic conductivity, and may result in tree death. The main mechanism by which trees slow down such tension increases is by actively closing their stomata. However, even if stomata are fully closed, some water loss can still occur through cuticular evaporation. Therefore, non-stomatal mechanisms exist that additionally reduce water losses, and hence increase hydraulic safety. Among these, leaf shedding as well as non-stomatal limitations over photosynthesis (NSL, combining increases in mesophyll conductance and biochemical down-regulation on photosynthesis), are well-known but poorly quantified mechanisms that trees may trigger to save water under drought stress. In order to better describe such mechanisms quantitatively, we conducted a severe two-month-long dry-down experiment on potted Scots pine (Pinus sylvestris L.) saplings (n = 6) and under controlled conditions. We measured tree transpiration, photosynthesis and leaf shedding. Based on our observations we trained a state-of-the-art tree hydraulic model and we quantified the impact of the above-mentioned processes on whole-tree percent loss of conductance. Results/Conclusions We found that NSL play a key role in tree drought response by further reducing conductance, which subsequently reduces transpiration and delays dehydration. If sap flow was reduced below a given threshold, saplings responded by shedding leaves. Noteworthy, this threshold was uncorrelated to soil water content. Leaf shedding buffered reductions in xylem water potential and loss of whole-tree conductance in the mid-term. This indicates a hierarchy of active acclimation processes involving a continuous NSL response, and a threshold-based leaf area reduction when P. sylvestris is in danger to lose water to dangerous degrees without any counterpart in form of photosynthetic gain. Combined, both mechanisms reduce whole-plant C uptake, but contribute to tree survival under drought stress

    Leaf Shedding and Non-Stomatal Limitations of Photosynthesis Mitigate Hydraulic Conductance Losses in Scots Pine Saplings During Severe Drought Stress

    Get PDF
    During drought, trees reduce water loss and hydraulic failure by closing their stomata, which also limits photosynthesis. Under severe drought stress, other acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible conductance loss. Here, we investigate two of them: the reversible impacts on the photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis, and the irreversible effect of premature leaf shedding. We integrate NSL and leaf shedding with a state-of-the-art tree hydraulic simulation model (SOX+) and parameterize them with example field measurements to demonstrate the stress-mitigating impact of these processes. We measured xylem vulnerability, transpiration, and leaf litter fall dynamics in Pinus sylvestris (L.) saplings grown for 54 days under severe dry-down. The observations showed that, once transpiration stopped, the rate of leaf shedding strongly increased until about 30% of leaf area was lost on average. We trained the SOX+ model with the observations and simulated changes in root-to-canopy conductance with and without including NSL and leaf shedding. Accounting for NSL improved model representation of transpiration, while model projections about root-to-canopy conductance loss were reduced by an overall 6%. Together, NSL and observed leaf shedding reduced projected losses in conductance by about 13%. In summary, the results highlight the importance of other than purely stomatal conductance-driven adjustments of drought resistance in Scots pine. Accounting for acclimation responses to drought, such as morphological (leaf shedding) and physiological (NSL) adjustments, has the potential to improve tree hydraulic simulation models, particularly when applied in predicting drought-induced tree mortality

    Digitales Video

    Get PDF
    Elektronische Dokumente werden immer häufiger durch zeitbasierte Medienobjekte wie z.B. Videoclips angereichert. Selbst im WWW sind mittlerweile Videos komfortabel durch Streamingtechnologie verfügbar. Rechnergestützte Videoschnittlösungen und Telekonferenzsysteme sind zudem weitere Einsatzfelder für digitale Videosequenzen. Aufgrund beschränkter Ressourcen ist Kompression aber weiterhin ein entscheidender Einsatzfaktor

    Type of vaccine and immunosuppressive therapy but not diagnosis critically influence antibody response after COVID-19 vaccination in patients with rheumatic disease

    Get PDF
    Objective: The development of sufficient COVID-19 vaccines has been a big breakthrough in fighting the global SARS-CoV-2 pandemic. However, vaccination effectiveness can be reduced in patients with autoimmune rheumatic diseases (AIRD). The aim of this study was to identify factors that lead to a diminished humoral vaccination response in patients with AIRD. Methods: Vaccination response was measured with a surrogate virus neutralisation test and by testing for antibodies directed against the receptor-binding-domain (RBD) of SARS-CoV-2 in 308 fully vaccinated patients with AIRD. In addition, 296 immunocompetent participants were investigated as a control group. Statistical adjusted analysis included covariates with a possible influence on antibody response. Results: Patients with AIRD showed lower antibody responses compared with immunocompetent individuals (median neutralising capacity 90.8% vs 96.5%, p<0.001; median anti-RBD-IgG 5.6 S/CO vs 6.7 S/CO, p<0.001). Lower antibody response was significantly influenced by type of immunosuppressive therapy, but not by rheumatic diagnosis, with patients under rituximab therapy developing the lowest antibody levels. Patients receiving mycophenolate, methotrexate or janus kinase inhibitors also showed reduced vaccination responses. Additional negative influencing factors were vaccination with AZD1222, old age and shorter intervals between the first two vaccinations. Conclusion: Certain immunosuppressive therapies are associated with lower antibody responses after vaccination. Additional factors such as vaccine type, age and vaccination interval should be taken into account. We recommend antibody testing in at-risk patients with AIRD and emphasise the importance of booster vaccinations in these patients

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID)

    Get PDF
    Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting. Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators. Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0% with systemic lupus erythematosus, 15.7% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1% multiple sclerosis and 10.0% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3% of patients showed no response, 45.1% showed a partial response and 41.6% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm). Conclusions: Data from this registry indicate that rituximab is a commonly employed, well-tolerated therapy with potential beneficial effects in standard of care-refractory autoimmune diseases, and support the results from other open-label, uncontrolled studies

    Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    Get PDF
    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p
    • …
    corecore