22 research outputs found

    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs

    Get PDF
    Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art

    Microfabricated Probes for Studying Brain Chemistry: A Review

    Full text link
    Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.Microfabricated neurochemical probes: Microfabrication technology emerges as an important tool for developing miniature, high precision probes for electrochemical detection and sampling from live brain tissues. This review describes advances and perspectives in adapting microfabrication to create the next generation of neurochemical probes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144231/1/cphc201701180_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144231/2/cphc201701180.pd

    Follow the light - From low-energy defibrillation to multi-site photostimulation

    No full text
    One major cause of death in the industrialized world is sudden cardiac death, which so far can be reliably treated only by applying strong electrical shocks. Developing improved methods, aiming at lowering shock intensity and associated side effects potentially has significant clinical implications. Thus, optogenetic stimulation using structured illumination has been introduced as a promising experimental tool to investigate mechanisms underlying multi-site pacing and to optimize potential low-energy approaches. Furthermore, an objective of this work is to strengthen the application of optogenetic tools for cardiac arrhythmia research, which in turn is expected to improve applicable technologies towards tissue-protective defibrillation

    Fabrication of Planar Copper Microcoils for Telemetric Orthodontic Applications

    No full text
    The fabrication of electroplated planar copper microcoils for telemetric orthodontic applications is presented. A set of microcoils with overall dimensions of 2 × 2.5 × 0.5 mm3, track widths down to 5 μm and turn numbers up to 35 were fabricated on glass substrates. The coils were electrically characterized and assembled via flip-chip bonding onto a stress-mapping CMOS chip for smart orthodontic brackets. The passive system was successfully read out telemetrically with a reader microcoil for a coil-coil distance of 1 mm at 13.56 MHz. The digital signal representing the measured stress values was extracted telemetrically using a commercially available RFID reader

    Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts

    No full text
    Ventricular tachyarrhythmias are a major cause of mortality and morbidity worldwide. Electrical defibrillation using high-energy electric shocks is currently the only treatment for life-threatening ventricular fibrillation. However, defibrillation may have side-effects, including intolerable pain, tissue damage, and worsening of prognosis, indicating a significant medical need for the development of more gentle cardiac rhythm management strategies. Besides energy-reducing electrical approaches, cardiac optogenetics was introduced as a powerful tool to influence cardiac activity using light-sensitive membrane ion channels and light pulses. In the present study, a robust and valid method for successful photostimulation of Langendorff perfused intact murine hearts will be described based on multi-site pacing applying a 3 x 3 array of micro light-emitting diodes (micro-LED). Simultaneous optical mapping of epicardial membrane voltage waves allows the investigation of the effects of region-specific stimulation and evaluates the newly induced cardiac activity directly on-site. The obtained results show that the efficacy of defibrillation is strongly dependent on the parameters chosen for photostimulation during a cardiac arrhythmia. It will be demonstrated that the illuminated area of the heart plays a crucial role for termination success as well as how the targeted control of cardiac activity during illumination for modifying arrhythmia patterns can be achieved. In summary, this technique provides a possibility to optimize the on-site mechanism manipulation on the way to real-time feedback control of cardiac rhythm and, regarding the region specificity, new approaches in reducing the potential harm to the cardiac system compared to the usage of non-specific electrical shock applications
    corecore