189 research outputs found

    Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames

    Get PDF
    It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudospectral code Dedalus. Because the flame propagation timescale is much longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a {\it turbulent} chemical diffusivity produced by the convection as a function of height, Dt(z)D_{\rm t}(z). Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, DtD_{\rm t}, is shorter than the flame propagation timescale, set by the thermal diffusivity, κ\kappa, i.e., when Dt>κD_{\rm t}>\kappa. However, we find Dt<κD_{\rm t}<\kappa for most of the flame because convective plumes are not dense enough to penetrate into the flame. Extrapolating to realistic stellar conditions, this implies that convective mixing cannot stall a carbon flame and that "hybrid carbon-oxygen-neon" white dwarfs are not a typical product of stellar evolution.Comment: Accepted to Ap

    A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 246 (2007): 120-136, doi:10.1016/j.palaeo.2006.10.030.The Hudson Shelf Valley (HSV) is the largest physiographic feature on the U.S. mid-Atlantic continental shelf. The 150-km long valley is the submerged extension of the ancestral Hudson River Valley that connects to the Hudson Canyon. Unlike other incised valleys on the mid-Atlantic shelf, it has not been infilled with sediment during the Holocene. Analyses of multibeam bathymetry, acoustic backscatter intensity, and high-resolution seismic reflection profiles reveal morphologic and stratigraphic evidence for a catastrophic meltwater flood event that formed the modern HSV. The valley and its distal deposits record a discrete flood event that carved 15-m high banks, formed a 120-km2 field of 3- to 6-m high bedforms, and deposited a subaqueous delta on the outer shelf. The HSV is inferred to have been carved initially by precipitation and meltwater runoff during the advance of the Laurentide Ice Sheet, and later by the drainage of early proglacial lakes through stable spillways. A flood resulting from the failure of the terminal moraine dam at the Narrows between Staten Island and Long Island, New York, allowed glacial lakes in the Hudson and Ontario basins to drain across the continental shelf. Water level changes in the Hudson River basin associated with the catastrophic drainage of glacial lakes Iroquois, Vermont, and Albany around 11,450 14C year BP (~ 13,350 cal BP) may have precipitated dam failure at the Narrows. This 3200 km3 discharge of freshwater entered the North Atlantic proximal to the Gulf Stream and may have affected thermohaline circulation at the onset of the Intra-Allerød Cold Period. Based on bedform characteristics and fluvial morphology in the HSV, the maximum freshwater flux during the flood event is estimated to be ~ 0.46 Sv for a duration of ~ 80 days.Support for N. Driscoll was provided by the Office of Naval Research and the National Science Foundatio

    The NEID Precision Radial Velocity Spectrometer: Port Adapter Overview, Requirements, and Test Plan

    Get PDF
    The NEID spectrometer is an optical (380-930 nm), fiber-fed, precision Doppler spectrometer currently in development for the WIYN 3.5 m telescope at Kitt Peak National Observatory as part of the NN-EXPLORE partnership. Designed to achieve a radial velocity precision of < 30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID "Port Adapter" system is mounted at this bent Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several sub-components designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrometer by injecting known wavelength sources such as a laser frequency comb. Here we provide an overview of the overall opto-mechanical design and system requirements of the Port Adapter. We also describe the development of system error budgets and testplans to meet those requirements

    Midwest vision for sustainable fuel production

    Get PDF
    This article charts the progress of CenUSA Bioenergy, a USDA-NIFA-AFRI coordinated agricultural project focused on the North Central region of the US. CenUSA’s vision is to develop a regional system for producing fuels and other products from perennial grass crops grown on marginally productive land or land that is otherwise unsuitable for annual cropping. This article focuses on contributions CenUSA has made to nine primary systems needed to make this vision a reality: feedstock improvement; feedstock production on marginal land; feedstock logistics; modeling system performance; feedstock conversion into biofuels and other products; marketing; health and safety; education, and outreach. The final section, Future Perspectives, sets forth a roadmap of additional research, technology development and education required to realize commercialization

    Sedimentary evidence of hurricane strikes in western Long Island, New York

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06011, doi:10.1029/2006GC001463.Evidence of historical landfalling hurricanes and prehistoric storms has been recovered from backbarrier environments in the New York City area. Overwash deposits correlate with landfalls of the most intense documented hurricanes in the area, including the hurricanes of 1893, 1821, 1788, and 1693 A.D. There is little evidence of intense hurricane landfalls in the region for several hundred years prior to the late 17th century A.D. The apparent increase in intense hurricane landfalls around 300 years ago occurs during the latter half of the Little Ice Age, a time of lower tropical sea surface temperatures. Multiple washovers laid down between ~2200 and 900 cal yr B.P. suggest an interval of frequent intense hurricane landfalls in the region. Our results provide preliminary evidence that fluctuations in intense hurricane landfall in the northeastern United States were roughly synchronous with hurricane landfall fluctuations observed for the Caribbean and Gulf Coast, suggesting North Atlantic–wide changes in hurricane activity.Grants from the National Science Foundation (EAR 0519118), Risk Prediction Initiative at the Bermuda Biological Station for Research, and the Coastal Ocean Institute of Woods Hole Oceanographic Institution supported this research

    The NEID precision radial velocity spectrometer: Commissioning of the Port Adapter

    Get PDF
    In October 2019, the NEID instrument (PI Suvrath Mahadevan, PSU) was delivered to the WIYN 3.5 m Telescope at Kitt Peak National Observatory. Commissioning began shortly after delivery, but was paused due to a COVID-19 imposed observatory shutdown in March 2020. The observatory has recently reopened and NEID commissioning has resumed. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NN-EXPLORE partnership. While the spectrometer and calibration system are maintained in a highly controlled environment on the basement level of the WIYN, the NEID Port Adapter mounts directly to a bent-Cassegrain port on the telescope and is responsible for precisely and stably placing target light on the science fibers. Here we present a brief overview of the as-built Port Adapter and its sub-components. We then discuss preliminary on-sky performance compared to requirements as well as next steps as we complete commissioning

    TOI-4201: An Early M-dwarf Hosting a Massive Transiting Jupiter Stretching Theories of Core-Accretion

    Full text link
    We confirm TOI-4201 b as a transiting Jovian mass planet orbiting an early M dwarf discovered by the Transiting Exoplanet Survey Satellite. Using ground based photometry and precise radial velocities from NEID and the Planet Finder Spectrograph, we measure a planet mass of 2.59−0.06+0.07^{+0.07}_{-0.06} MJ_{J}, making this one of the most massive planets transiting an M-dwarf. The planet is ∼\sim0.4\% the mass of its 0.63 M⊙_{\odot} host and may have a heavy element mass comparable to the total dust mass contained in a typical Class II disk. TOI-4201 b stretches our understanding of core-accretion during the protoplanetary phase, and the disk mass budget, necessitating giant planet formation to either take place much earlier in the disk lifetime, or perhaps through alternative mechanisms like gravitational instability.Comment: To be submitted to AAS journals on 14th July 202
    • …
    corecore