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ABSTRACT

It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon
deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of
convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the
pseudo-spectral code Dedalus. Because the flame propagation timescale is much longer than the convection
timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid.
By evolving a passive scalar field, we derive a turbulent chemical diffusivity produced by the convection as a
function of height, D zt ( ). Convection can stall a flame if the chemical mixing timescale, set by the turbulent
chemical diffusivity, Dt, is shorter than the flame propagation timescale, set by the thermal diffusivity, κ, i.e., when

k>Dt . However, we find k<Dt for most of the flame because convective plumes are not dense enough to
penetrate into the flame. Extrapolating to realistic stellar conditions, this implies that convective mixing cannot stall
a carbon flame and that “hybrid carbon–oxygen–neon” white dwarfs are not a typical product of stellar evolution.
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1. INTRODUCTION

Super-asymptotic giant branch (SAGB) stars are character-
ized by the development of a degenerate carbon–oxygen (CO)
core and the subsequent ignition of off-center carbon fusion
within it. Stellar evolution calculations show that this occurs in
stars that have zero-age main-sequence masses » M7 11– ☉,
with this mass range depending on the metallicity and on
modeling assumptions such as the mass-loss rate and the
efficiency of mixing at convective boundaries. Carbon ignition
initially occurs as an off-center flash, but after one or more of
these flashes, a self-sustaining carbon-burning front can
develop (see, e.g., Siess 2006; Farmer et al. 2015). This
“flame” propagates toward the center of the star extremely sub-
sonically, as heat from the burning front is conducted inward.
The heat from the burning also drives a convective zone above
the burning front, and in the quasi-steady-state, the energy
released by carbon fusion is balanced by energy losses via
neutrino cooling in this convective zone (Timmes et al. 1994).
As the carbon-burning flame propagates to the center, it leaves
behind oxygen–neon (ONe) ashes. This process creates the
core that will become a massive ONe WD or collapse to a
neutron star, powering an electron-capture supernova (Miyaji
et al. 1980).

However, the presence of additional mixing near the flame
can lead to its disruption, preventing carbon burning from
reaching the center. There are at least two physical processes
that may play a role in this region: (1) mixing driven by the
thermohaline-unstable configuration of the hot ONe ash on top
of the cooler CO fuel and (2) mixing driven by the presence of
a convective zone above the flame via convective overshoot.
These processes were investigated by Denissenkov et al. (2013)

using 1D stellar evolution models. With a thermohaline
diffusion coefficient informed by multi-dimensional hydro-
dynamics simulations, they concluded that thermohaline
mixing was not sufficient to disrupt the flame. However, they
did find that the introduction of sufficient convective boundary
mixing—using a model of exponential overshooting (Freytag
et al. 1996; Herwig 2000)—disrupted the flame, preventing
carbon burning from reaching the center. This led to the
production of “hybrid C/O/Ne” WDs, in which a CO core is
overlaid by an ONe mantle. Several groups have begun to
model the explosions that would originate from objects with
this configuration (Denissenkov et al. 2015; Kromer et al.
2015; Bravo et al. 2016; Willcox et al. 2016).
Is mixing sufficiently vigorous to disrupt the carbon flame?

This is a key question for understanding the final outcomes of
SAGB stars and the WDs they produce. If the thermal
diffusivity κ is much larger than the chemical diffusivity D,
the flame propagates into fresh fuel much more quickly than
the fuel and ash can mix, allowing the flame to successfully
propagate to the center of the star. We estimate k ~D 106

using the thermal conductivity in MESA (which is drawn from
Cassisi et al. 2007) and a chemical diffusivity from Beznogov
& Yakovlev (2014). However, convective mixing could
produce a turbulent diffusivity Dt, which if similar to κ, could
mix ash into the fuel, stalling the flame, as was found in
Denissenkov et al. (2013).
In this paper, we present 3D simulations of an idealized

model of a convectively bounded carbon flame. These
simulations allow us to measure the enhanced mixing due to
convective overshoot, and to determine if k>Dt within the
flame. Section 2 summarizes the properties of carbon flames,
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which we use to motivate the problem setup presented in
Section 3. Section 4 presents the results of our simulations and
we discuss their implications in Section 5.

2. CARBON FLAME PROPERTIES

To obtain an example of the structure of a carbon flame, we
evolve a star with azero-age main-sequence mass of 9.5 M☉
using revision 6794 of the MESA stellar evolution code10

(Paxton et al. 2011, 2013, 2015). We used the publicly
available inlists of Farmer et al. (2015), who undertook a
systematic study of carbon flames in SAGB stars. We did not
include the effects of overshoot at the convective boundaries,
but did include the effects of thermohaline mixing. The Brunt–
Väisälä (buoyancy) frequency profile of the carbon flame is
shown by the blue line in Figure 1. The thermal component
dominates the buoyancy frequency. The much smaller
compositional component is destabilizing, but Denissenkov
et al. (2013) found thermohaline mixing to not affect flame
propagation. The flame structure in Figure 1 is similar to that
shown in Figure3 of Denissenkov et al. (2013).

The peak of the buoyancy frequency profile shown in
Figure 1 is at a Lagrangian mass coordinate of =M M0.13r ☉.
The properties of the flame change as it propagates, but the
following numbers are representative throughout the evolution.
The inward flame velocity is = ´ - -u 9 10 cm s ;4 1 it will take
~10 years4 to reach the center. The flame width, δ, measured in
terms of pressure scale height, = ´H 2 10 cm8 , is
d »H 0.03. The timescale for the flame to cross itself,

d= »t u 200 yearscross , which is also the timescale for the
nuclear burning to occur. The convection zone above the flame
has a radial extent of about one pressure scale height and a
convective turnover timescale of a few hours. This implies that
there are~105 convective turnover times in the time it takes the
flame to cross itself. Thus, over the relatively smaller number
of convective turnover times covered by our simulations,~102,

the flame is effectively stationary, allowing us to exclude
nuclear reactions in our model.
We note that our stationarity assumption is not universally

applicable. Convectively bounded ONe-burning flames, which
can also occur in the late evolution of stars in this mass range
are thinner, d ~ 10 cm3 , and have higher velocities,
~ -u 1 cm s 1, as a result of the higher energy generation rate

(Timmes et al. 1994; Woosley & Heger 2015). Consequently,
the time for the flame to traverse its width may be 10
convective turnover times. Thus it is difficult to anticipate how
our simulations carry over to the case of ONe flames.
The Mach number of the convection is » ´ -4 10 5, so

compressibility does not play an important role in the
convection. To measure the degree of turbulence of the
convection, we calculate the Rayleigh number

w
nk

=
H

Ra , 10
2 4

( )

which is the ratio of convective driving to diffusive damping.
The variables w0 and H represent typical convective frequen-
cies and lengths, and ν and κ are the kinematic viscosity and
thermal diffusivity. We estimate the convection driven by a
carbon flame to have ~Ra 1024, using w ~ ´ - -3 10 s0

4 1,
~ ´H 2 10 cm8 , n ~ ´ - -5 10 cm s2 2 1 (Itoh et al. 1983), and

k ~ ´ -3 10 cm s3 2 1 (Itoh et al. 1987). This large Rayleigh
number means the flow is extremely turbulent.
Flames maintain coherence because their thermal diffusivity

is much larger than their chemical diffusivity. The ratio of these
diffusivities is the Lewis number

k
=

D
Le . 2( )

For carbon flames, we estimate ~Le 106.

3. PROBLEM SETUP

Our idealized simulations make a variety of assumptions to
render this problem computationally tractable. We do not
include nuclear reactions because the flame is effectively
stationary on the convection timescale. We use the Boussinesq
approximation because the Mach number of the convection is
small, and the height of the convection zone is about a scale
height, so we do not believe density contrasts across the
convection zone will strongly alter the dynamics.

3.1. Equations, Numerics, and Assumptions

We solve the 3D Boussinesq equations (Spiegel & Veronis
1960) using the Dedalus11 pseudo-spectral code (K. J. Burns
et al. 2017, in preparation).

n ¶ + -  - = -u u e u up gT , 3t z
2 · ( )

k ¶ -  = - +uT T T H , 4t
2 · ¯ ( )
 =u 0, 5· ( )

where u and p are the fluid velocity and pressure, respectively,
T is the temperature normalized to a reference value, g is the
gravitational acceleration, and ez is the unit vector in the
vertical direction. We neglect the compositional effects on
buoyancy (and thus thermohaline mixing), and always use
n k= for computational convenience.

Figure 1. Blue line shows the buoyancy frequency squared near a carbon flame
from a 9.5 M☉ star evolved in MESA. The red line is the buoyancy frequency
squared from the Dedalus simulation R8 (very close to its initial profile, see
Equation (6)). Due to computational limitations, the buoyancy frequency in the
model of the carbon flame is much lower and the transition between the
buoyancy peak and the convective region is much more gradual, in Dedalus
than in the MESA model. These differences both act to enhance the convective
mixing via overshoot in Dedalus. The inset shows the neutral buoyancy
height znb and the bottom of the convection zone z0 in the Dedalus simulation.
In the MESA model, this region is not resolved, with a width of

- < ´ -z z H3 100 nb
3 .

10 MESA is available at http://mesa.sourceforge.net/. 11 Dedalus is available at http://dedalus-project.org.
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Convective overshoot is particularly sensitive to the buoy-
ancy frequency profile (e.g., Brummell et al. 2002). Thus, we
study convective overshoot using a buoyancy frequency profile
inspired by a carbon flame. This assumes that the most
important property affecting turbulent mixing of a carbon flame
is its strong buoyancy stabilization.

The simulations are initialized with a temperature profile
T z0 ( ) satisfying =N z gdT dz0

2
0( ) , where

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

w=- + -
-
D

+
-
D

-

N N
z z

z

N
z z

z

1

2
1 tanh

cosh , 6

0
2

0
2

tail
2 fl

fl

fl
2 fl

fl

2

( )

where w0
2 is a characteristic convective frequency, and we take

w=N 100tail
2

0
2, w=N 10fl

2 4
0
2 as approximations to the MESA

model. The position of the buoyancy peak (“flame”) is
=z H0.9fl and its half-width is D =z H0.05fl , where H

represents a pressure scale height. We plot the time-averaged
buoyancy frequency profile of simulation R8 in Figure 1 with a
red line. All simulations have very similar buoyancy frequency
profiles, which differ from N0

2 only very close to the bottom of
the convection zone. We also include a heating term

k= - ¶H Tz
2

0¯ ,which exactly balances the diffusion of T0. This
maintains the buoyancy profile and convection over the course
of our simulations, enforcing the stationary assumption.

It is important to note that a flame with the width and thermal
diffusivity used in our simulations would propagate across
itself in only 101–2 convective turnover times. This is because
the thermal diffusion in the simulations is much more rapid
than in a star. As a result, the stationary buoyancy peak in our
simulations does not self-consistently represent a real carbon
flame, whose properties would depend on the thermal
diffusivity. However, in the limit in which the thermal
diffusivity in the simulation approaches the thermal diffusiv-
ities realized in stars, the simulations would provide a good
approximation to convective overshoot in real carbon flames.
Therefore, we hold the buoyancy profile of the model “flame”
fixed as we carry out simulations with different microphysical
diffusivities. We show below that despite the need to
extrapolate the simulation results, we can nonetheless draw
firm conclusions about convective mixing in carbon flames.

The simulations are non-dimensionalized using the pressure
scale height H, and the initial buoyancy frequency in the
convection zone w= =N z H20 0∣ ( )∣ . These are used to define
a Rayleigh number (Equation (1)). The limited resolution of
any multi-dimensional astrophysics simulation requires diffu-
sivities much larger than in stars, so we can only reach

= Ra 10 109 24. Our highest resolution simulation required
about 3million cpu-hours on the Pleiades supercomputer.

We define the bottom of the convection zone, where
=N 02 , to be z0. We also define the height of neutral

buoyancy znb, the point at which á ñ = á ñT z T zx y t x y tnb , , top , ,( ) ( ) ,
where á ñx· denotes an average over x, and ztop is the top of the
domain (see inset in Figure 1). Plumes emitted at the top of the
convection zone become neutrally buoyant at znb. Convective
plumes cross z0, but rarely pass below znb.

The convection frequency wconv and the height of the
convection zone Hconv are outputs of the simulation. We define

Hconv using z0 and

w p=
w

H
2 , 7conv

rms

conv
( )

where wrms is the root mean square vertical velocity in the
convection zone. We find »H H0.83conv and w w~ 0.3conv 0.
Simulations with higher Ra have smaller wconv. This is

driven by the thermal equilibration of the system. In
thestatistically steady state, the convection zone is almost
isothermal, so the temperature perturbation at the bottom of the
convection zone is about w-H gconv 0

2 . To satisfy our bottom
boundary condition, the stable region has a temperature
gradient of about w-H gHconv 0

2
stable( ), where

= -H H2stable conv. Because the temperature gradient in the
stable region is independent of κ, the heat flux scales like
k ~ -Ra 1 2. To maintain flux balance, this heat flux must be
carried by the convective flux in the convection zone, which
scales like wrms

3 . Thus, we have that w~ ~ -w Rarms conv
1 6.

Plumes become neutrally buoyant at znb, but will penetrate
further due to their inertia. To measure this effect, we define an
“overshoot number” Ov, which is the ratio of inertial to
buoyancy forces near znb,

w
º

D
N

z

H
Ov , 8conv

2

fl
2

fl ( )

where we estimate the inertia of the fluid as w~ Hconv
2 , and the

buoyancy as DH N z2
fl
2

fl. The latter assumes the derivative of
the buoyancy frequency squared near znb is proportional to

DN zfl
2

fl. We report Ov for our simulations in Table 1.
For comparison, we estimate thatreal flames have
~ -Ov 10 10, using ~ ´N 2 10fl

2 8 and D =z H0.03fl . How-
ever, the buoyancy frequency profile is actually much steeper
than this linear estimate, so the real Ov is likely even smaller
(see Figure 1). Our chosen buoyancy profile differs from the
MESA model in two important ways: (1)the peak is at lower
frequenciesand (2)the buoyancy frequency approaches zero
more gradually. This is necessary because it is difficult to
resolve the fast buoyancy timescaleand sharp buoyancy
gradients numerically. Both of these changes lead to substan-
tially higher Ov than we expect in real flames. Thus, we expect
our simulated plumes to penetrate much further than the
convective plumes driven by carbon flames. Table 1 also
reports the Reynolds number, a measure of the degree of
turbulence in the fluid, defined as

n
=

w H
Re . 9rms conv ( )

We solve the equations in cartesian geometry (x y z, , ), in the
domain ´H H0, 4 0, 22[ ] [ ]. The simulations are periodic in
the horizontal directions, and no-slip with zero temperature
perturbation at the top and bottom. All quantities are expanded
in a Fourier series in the horizontal directions. In the vertical
direction, quantities are independently expanded in Chebyshev
polynomials over the domain H0, 1.05[ ], and over the domain

H H1.05 , 2[ ], with boundary conditions imposed at =z H1.05
to maintain continuity of each quantity and its first vertical
derivative. An equal number of Chebyshev modes are used in
each vertical sub-domain. 3/2 dealiasing is used in each
direction. We use mixed implicit-explicit timestepping, where
all the linear terms are treated implicitly, and the remaining
terms treated explicitly. The timestep size is determined using
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the Courant–Friedrichs–Lewy (CFL) condition. Table 1
describes the simulations presented in this paper.

3.2. Passive Tracer Field

The goal of this work is to estimate turbulent diffusivities
associated with convective overshoot. To do this, we solve for
the evolution of a passive tracer field c

¶ -  = -uc D c c. 10t
2 · ( )

The tracer c heuristically represents the fuel concentration, and
D is a proxy for chemical diffusivity (and is required for
numerical stability). The tracer c satisfies zero flux boundary
conditions on the top and bottom of the domain, so its volume
integral is conserved. It is initialized with

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥= -

-
D

c
z H

z

1

2
1 tanh

0.8
, 11

fl
( )

which corresponds to c=0 in the convection zone and c=1
below the buoyancy peak in the stable region.

4. RESULTS

After several convective turnover times, the system reaches a
statistically steady state. We visualize the convection in
Figure 2, plotting 2D vertical slices of the temperature
perturbation field and the normalized passive scalar field. The
temperature perturbation is ¢ = - á ñT T T x y t, , . We normalize
the passive scalar field by subtracting off the volume-average,
and setting its value to 1 at the bottom boundary:

= - á ñ á = ñ - á ñc c c c z c0 . 12x y z x y x y z, , , , ,˜ ( ) ( ( ) ) ( )

Figure 2 includes dashed lines at the bottom of the
convection zone, z0, and solid lines at the height of neutral
buoyancy znb. There is substantial convective overshoot
between z0 and znb. Below znb, the buoyancy perturbations
show the long, coherent structures of internal gravity waves.
These waves yield negligible mixing.

4.1. Self-similar Solution

We now study the evolution of the horizontal average of the
passive scalar field, º á ñc c x y,¯ . After several convective

turnover times, c̄ approaches a self-similar solution. The left
panel of Figure 3 shows the evolution of c̄ in simulation R8,
where t0 is several turnover times after the beginning of the
simulation. The profiles collapse to a single curve after
subtracting off the volume-average and normalizing the bottom
value to unity (i.e., taking the horizontal average of c̃ shown in
Figure 2). This indicates that

- á ñ c z t c A t C z, , 13z¯ ( ) ¯ ( ) ( ) ( )

where A(t) is an amplitudeand C(z) isthe vertical profile in the
right panel of Figure 3. Furthermore, we find that

l= -A t A texp0( ) ( ). C thus satisfies the equation

l - - ¶ = - uC D C
c

A
14z

x y t

2

, ,
· ( )

Table 1
List of Simulations

Name Ra Le Resolution Timestepper/CFL Ov Re k=Dt k=D 0.3t =D 0t Lov

R7 107 1 2563 RK222a/1.0 ´ -4 10 4 150 1.123 1.097 1.066 0.111
R8 108 1 2563 RK222/1.0 ´ -2 10 4 329 1.122 1.102 1.080 0.101
R9 109 1 5123 SBDF2b/0.4 ´ -1 10 4 751 1.122 1.107 1.091 0.090
R7L3 107 101 2 2563 RK222/1.0 ´ -4 10 4 150 1.133 1.102 1.061 0.116
R8L3 108 101 2 2563 c RK222/1.0 ´ -2 10 4 329 1.133 1.109 1.083 0.098
R7L10 107 10 2563 c RK222/1.0 ´ -4 10 4 150 1.145 1.111 1.063 0.114

Notes. The Rayleigh and Lewis Number characterize the diffusion in the simulations (see Equations (1) and (2)). The resolution is the number of Fourier or Chebyshev
modes used in each direction. The CFL safety factor is listed along with our choice of timestepper. The overshoot number Ov measures the ratio of inertial to
buoyancy forces in the overshoot region (see Equation (8)). The Reynolds number describes the degree of turbulence in the simulation (see Equation (9)). The three
columns after the Reynolds Number are the heights at which ak=Dt , where a = 1, 0.3, or 0. For comparison, in simulation R8, the bottom of the convection zone is

=z 1.1800 and the height of neutral buoyancy is =z 1.116nb . The last column is the overshoot length (normalized to the pressure scale height H), defined as the
distance between the bottom of the convection zone and the location where =D 0t .
a Second order, two-stage Runge–Kutta method (Ascher et al. 1997).
b Second order semi-backward differencing (Wang & Ruuth 2008).
c The passive scalar field is evolved at 5123.

Figure 2. Two-dimensional vertical slices of the temperature perturbation field
(top) and the normalized passive scalar field (bottom) in simulation R9. The
color scale for c̃ consists of two linear maps, stitched together at » -c 0.5˜ to
show the small variations within the convection zone. The dashed line shows
the bottom of the convection zone, z0, and the solid line shows znb the neutral
buoyancy height. The perturbations below znb are waves and yield negligible
mixing.
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We now assume that the term on the right-hand side can be
written as a turbulent diffusion term. This is the Fickian
diffusion ansatz (e.g., Brandenburg et al. 2009). The equation
can be rewritten as

l- = ¶ + ¶C D D C , 15z zt[( ) ] ( )

where D zt ( ) is a turbulent diffusivity profile. We can invert
Equation (15) to solve for Dt in terms of λ and C by integrating
the equation with respect to z and then dividing by ¶ Cz . We
find that D Dt in the stable region, and is large ~w Hrms conv

in the convection zone; the value of Dt is not well-constrained
in the convection zone, as ¶ Cz is very close to zero. We find
that the effective diffusivity, D+Dt is well-fit by two error
functions, one which varies from zero in the convection zone to
D in the stable region, the other which varies from zero in the
stable region to w Hrms conv in the convection zone. In the rest of
this paper, we replace Dt by a least-squares fit composed of
these error functions. Figure 5 (left panel) includes both Dt∣ ∣
(dotted black line) and the least-squares fit (yellow line) for
simulation R8.

4.2. Turbulent Diffusivity Model

To show that the convection acts like turbulent diffusivity,
we solve the model equation

¶ = ¶ + ¶S z t D D S z t, , . 16t z zt( ) [( ) ( )] ( )

If we initialize S z t,( ) with á = ñc t t x y0 ,( ) and use our fit for
D zt ( ), we find that »S A t C z( ) ( ), as shown in Figure 3, for
every simulation.

As a further test of the diffusion model, we re-initialized
simulation R8 with a new concentration field profile halfway
through the simulation at time t1. We solved Equation (16) with

= =S z t c t t, 1 1( ) ¯ ( ). Figure 4 shows that »S c̄ for the
remainder of the simulation.

4.3. Diffusion Profiles

We plot the turbulent diffusion profiles D zt ( ) for each of our
simulations in Figure 5, both in units of the characteristic
convective diffusivity (left panel), and in units of the thermal
diffusivity (right panel). In the convection zone, the diffusivity
is about equal to the convective diffusivity, partially dictated by
our choice of fit. The turbulent diffusivity drops from its
convective value within the convection zone. This cannot be
attributed to the change in the horizontal average of w2 near z0
(similar to Jones et al. 2016). Deep within the stably stratified
region, the turbulent diffusivity is nearly zero.
We are interested in how Dt transitions from large values in

the convection zone to small values in the stable region. In this
respect, the behavior of kDt is very similar in all simulations

Figure 3. Horizontal average of the passive scalar field at four times in
simulation R8. c̄ is also time-averaged around each time for w-30 conv

1 . The
passive scalar field is attracted to the self-similar solution, C (right panel and
Equation (13)). The left panel also shows the solution of the effective diffusion
model (Equation (16)). The 1D effective diffusion model matches the 3D
simulation.

Figure 4. Horizontal average of a passive scalar field using the convection in
simulation R8. c is initialized at t1 to be horizontally uniform, with the vertical
profile shown here. The diffusion model Equation (16) was initialized with the
same profile. The 1D effective diffusion model matches the 3D simulation over
the entire simulation.

Figure 5. Turbulent diffusivity (Equation (15)) as a function of height in each
of our simulations, both in units of the characteristic convective diffusivity (left
panel)and in units of the thermal diffusivity (right panel). We plot a fit to Dt

for all simulations, and also plot Dt∣ ∣ itself in the thin dotted line for simulation
R8. The dashed line shows the bottom of the convection zone, z0, and the solid
line shows znb, the neutral buoyancy height. In the left panel, the height at
which k=D 0.3t is marked by an asterisk—mixing can only affect flame
propagation above this point. The hatched region shows the region that must be
mixed in order to disrupt the flame (Section 4.4). Increasing Ra and/or Le
causes Dt to approach zero further away from the buoyancy peak, meaning that
mixing is less significant for more realistic parameters.
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(Figure 5, right panel). Heuristically, we expect mixing to play
a role in the propagation of flames when k~Dt . We find that
the height at which k=Dt is almost independent of Ra, but
increases with Le (Table 1), i.e., moves closer to the convective
boundary and further from the “flame.” In Section 4.4, we find
that a more precise criterion for flame disruption is  kD 0.3t
in the region in which N N0.1 fl. The height at which

k=D 0.3t increases with both Ra (Figure 5, left panel)and Le
(Table 1), suggesting that flame disruption becomes less likely
for more realistic values of Ra and Le.

Two common parameterizations of convective overshoot are
exponential overshoot, in which the turbulent diffusivity drops
exponentially with distance from the end of the convection
zone (e.g., Herwig 2000), and an overshoot length, in which the
convective diffusivity is set to zero at a length Lov beyond the
convection zone (e.g., Shaviv & Salpeter 1973; Maeder 1975).
In all our simulations, Dt is negative below a critical height
(although the effective diffusivity D+Dt is everywhere
positive). This suggests that a good parameterization of our
simulations would be an overshoot length, rather than
exponential overshoot. We define the overshoot length Lov to
be the distance between the bottom of the convection zone
(where =N 02 ), and the location where =D 0t , and report it
in Table 1. All lengths in the paper, including Lov are
normalized to the pressure scale height H. Below the point at
which =D 0t the absolute value of Dt is very small.12

The weak dependence of Dt in the overshoot region on the
diffusivities of the system suggests that the height at which

k=D 0.3t and the overshoot length Lov are determined
primarily by the length scale on which the buoyancy frequency
profile changes from zero to order wc, rather than a diffusive
length scale. This suggests that the key length scale in the
problem is ~ -z znb 0 (see Figure 1). Indeed, the overshoot
lenght ~ -L z zov nb 0 in all of our simulations (Table 1). This
is because dense plumes falling through the convection zone
become much lighter than their surroundings below znb, so they
cannot penetrate much further to produce mixing within the
flame. We expect the overshoot length to scale as

- - ~L z z Ov . 17ov 0 nb
1 3( ) ( )

Our simulations do not explore a sufficiently wide range of Ov
to test this scaling. Although increasing Ra or Le further will
introduce smaller eddies into simulations, we do not believe
these smaller eddies will enhance mixing because they are
subject to the same buoyancy barrier as the larger plumes
resolved in the simulations presented here.

4.4. Flame Disruption in MESA

We explore the secular effects of mixing on flame
propagation via a series of numerical experiments using
MESA. We begin with the evolution of a M9.5 ☉ star (the
same calculation discussed in Section 2). We save a model
when the carbon flame is at a Lagrangian mass coordinate of

M0.2 ☉. We load this model in revision 8118 of MESA and use
the built-in other_D_mix routine to introduce an artificial
chemical diffusivity in the vicinity of the flame. We then
observe whether this additional mixing affects the behavior of

the flame. In the absence of additional mixing, the carbon-
burning luminosity in the flame is smooth (in time) and roughly
constant, with some secular variation as the flame propagates
inward. We evolve the MESA models for »2000 years, which
is »10 self-crossing times for the flame; in this time, the
unperturbed flame propagates inwardthrough » M0.1 ☉ of
material. We classify the flame as “disrupted” if the carbon-
burning luminosity decreases significantly (by more than a
factor of ≈10) or exhibits oscillatory behavior (by more
than ≈10%).
First, we set the chemical diffusivity (Dt) roughly equal to

the convective diffusivity, -10 cm s12 2 1 (which is w~H2 ), in the
region of the flame where <N Ncrit. This allows us to
determine the region where significant mixing is required to
disrupt the flame. Increasing Ncrit increases the amount of
material in which additional mixing occurs, similar to
increasing the overshoot length scale.13 We find thatthe flame
is only disrupted if N N0.3crit fl, where Nfl is the peak of the
buoyancy frequency. This reflects the fact that it is necessary to
mix material in the region where the bulk of the nuclear energy
release is occurring in order to disrupt the flame.
Second, we set the chemical diffusivity to be a constant

factor times the thermal diffusivity over a region where
<N Ncrit. This allows us to determine the ratio kDt needed to

disrupt a flame. In terms of the opacity k , the thermal
diffusivity is given by



k
k r

=
acT

c

4
18

3

2
P

( )

where a is the radiation constant, cisthe speed of light,
Tisthe temperature, ρisthe density, and cPisthe specific heat
at constant pressure. For a value of =N N0.3crit fl, we find that
the flame is only disrupted if k>D 0.3t . This agrees with our
heuristic that k~Dt is necessary for flame disruption. If the
mixing is allowed to be even deeper into the flame (higher
Ncrit), lower diffusivities are required; however, because our
simulations suggest the turbulent diffusivity drops off very
sharply with depth, we believe the most germane requirement
for flame disruption is that from the shallowest mixing.
We use the criteria derived from these MESA calculations to

interpret the results of our Dedalus simulations. The Dedalus
simulations address where and how efficiently convection
mixes material in the presence of a buoyancy barrier. However,
because they do not self-consistently model a conductively
propagating flame, they cannot directly answer the question of
whether a flame disrupts. The MESA calculations directly
address whether convective mixing with a specific efficiency
(relative to κ) and at a specific location (relative to N) is
sufficient to disrupt a flame. We show these criteria in Figure 5:
the region where >N N0.3 fl is hatched and the points where

k=D 0.3t are marked with stars. In all ofour Dedalus
simulations, the stars are outside the hatched region, which
implies that the mixing observed in Dedalus would not be
sufficient to disrupt the flame.

5. CONCLUSIONS

This paper describes simulations of an idealized model of
convectively bounded carbon flames. The simulations are in the12 We cannot place strong constraints on Dt∣ ∣ when its value is very small

because its value can be influenced by some combination of(1) timestepping
errors due to using a low (2nd) order timestepper or (2) errors in the calculation
of C(z) or λ due to insufficient averaging.

13 However, unlike overshooting, the mixing that we introduce is not spatially
tied to the convective boundary.
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Boussinesq approximation, and assume a Brunt–Väisälä
frequency profile motivated by MESA simulations of carbon
flames (Figure 1). On the convective timescale, carbon flames
are almost stationary, so we do not explicitly include any
nuclear burning in our model.

The simulations evolve a passive scalar field which
heuristically represents the carbon species fraction. Over-
shooting plumes mix the passive scalar into the convection
zone. The passive scalar field quickly approaches a self-similar
solution (Equation (13); see Figure 3), allowing us to calculate
an effective diffusivity profile D zt ( ). The horizontally averaged
3D evolution of the passive scalar field is very well
approximated by the solution of a 1D diffusion equation
(Equation (16); see Figure 4).

Our simulations have large diffusivities compared to real
stars. Despite the unphysical parameter regime of our
simulations, we believe that we can still draw strong
conclusions about mixing in real carbon flames, because of
the clear trends in the simulation results as the parameters
become more realistic, i.e., with increasing Rayleigh and Lewis
numbers.

Carbon flames have k ~D 106, but convective mixing can
stall a flame if the turbulent mixing due to overshoot is such
that k~Dt within the flame. Overshoot in 1D stellar models is
sometimes modeled by exponentially decreasing the diffusion
coefficient outside the convection zone over a characteristic
length (e.g., Herwig 2000). This parameterization does not in
fact apply to our simulations, which have turbulent diffusivities
thatdecrease as Gaussians, and then become negative below a
critical height (Section 4.3). This suggests that a more useful
parameterization is an overshoot length becausewe find no
convective mixing below a critical height.

MESA calculations suggest that a region near the peak of the
buoyancy frequency ( ~N N0.3 fl) must be mixed with

k>D 0.3t in order to disrupt the flame (Section 4.4). None
of our simulations of convective overshoot show any
convective mixing in this region. In all of our simulations,
the height at which k=D 0.3t is well outside the region near
the peak of the buoyancy frequency that MESA simulations
show must be mixed in order to stall the flame (Figure 5).
Moreover, this height shifts closer and closer to the convection
zone (away from the flame) as either the Rayleigh number or
k D (the Lewis number) increases toward more realistic
values.

Furthermore, our simulations greatly overestimate the
mixing efficiency because our buoyancy frequency increases
only modestly with depth (Figure 1). Although the ratio of
inertia in our convective plumes to the stabilizing buoyancy
force is very small (~ -10 ;4 see Table 1), we estimate that our
simulated plumes are nonetheless more powerful than realistic
plumes by a factor of at least ~106.

Taken together, these results strongly suggest that convec-
tion provides insufficient mixing to disrupt real carbon flames.
The only way out of this conclusion is to posit that for yet
higher Ra or Le numbers, the trends we find in mixing with
increasingly realistic parameters reverse. Although we cannot
rule this out, we regard it as unlikely. Physically, the lack of
mixing is due to a simple physical principle: convective plumes
must overcome a huge buoyancy barrier to reach the flame.
There is no reason to expect them to suddenly be able to do so
at even higher Ra or Le. As a result, we conclude that
convection provides insufficient mixing to disrupt a carbon

flame and that “hybrid C/O/Ne” WDs are unlikely to be a
typical product of stellar evolution.
We have neglected important physics in this work, including

rotation, magnetism, density stratification, and nuclear burning.
However, it seems difficult for these effects to overcome the
potential energy barrier, so we do not believe they will change
our conclusion.
Internal gravity waves generated by the convection could

mix the fluid via breaking. The wave amplitude increases as
N as the waves leave the convection zone and approach the

flame. Waves can break if x ~k 1r r , where xr is the vertical
displacement and kr is the vertical wavenumber. Neglecting
damping, theoretical models of internal wave generation by
convection (e.g., Lecoanet & Quataert 2013) claim x ~k 1r r at
the peak of the buoyancy frequency, Nfl. However, the waves
linearly damp due to thermal diffusion (which does not lead to
chemical mixing). For carbon flames, we estimate the linear
damping to become important near Nfl, so it is unclear if the
waves would break. Furthermore, breaking waves may only
mix the unburnt fuel near Nfl, having little effect on flame
propagation.
Our simulations all have n k= , but in stars, we estimate the

Prandtl number n k= ~ -Pr 10 5. Thus, there are small-scale
motions that are isothermal, but not strongly influenced by
viscosity. These motions can penetrate the buoyancy gradient
in the flame, and thus are expected to enhance mixing. At a
fixed Pr, we expect mixing to become less efficient as Ra
increases, as the length scale on which perturbations are
isothermal will decrease. Thus, as Ra increases, there will be
less and less energy in isothermal perturbations.
More quantitatively, the largest length scale for isothermal

perturbations is k~ℓ vℓ, where vℓ is typical velocity of eddies
of size ℓ. Assuming a Kolmogorov cascade with

w~v H ℓ Hℓ 0
1 3( ) , we have ~ ´ -v 3 10 cm sℓ

2 1 and
~ℓ 10 cm. The diffusive mixing produced by these eddies is

about k~ ~D ℓvℓt , which is enough to disrupt the flame.
However, these eddies will travel a depth of dℓ , and thus
should not penetrate far enough into the flame to disrupt it.
Future work should validate these estimates.
Given the strong intermittency of convective turbulence, it is

also possible that the majority of overshoot mixing may be
caused by a few rare but powerful plumes. Although our study
cannot rule out this possibility, we note that there are about
~106 convective turnover times in the lifetime of a carbon
flame. This is many fewer turnover times than in other
astrophysical contexts (e.g., the solar convection zone), so rare
events may be less important for carbon flames.
Future work should also study mixing via overshoot in ONe

flames, which is important for understanding whether stars at
the top of the SAGB mass range undergo Fe core collapse or
electron-capture-induced ONe core collapse (Jones et al. 2014).
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