207 research outputs found

    Best practices for time-resolved serial synchrotron crystallography

    Get PDF
    With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments

    Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance

    Get PDF
    Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes

    Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa.

    Get PDF
    Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFÎČ) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFÎČ activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    The APOE E4 allele is associated with faster rates of neuroretinal thinning in a prospective cohort study of suspect and early glaucoma

    Get PDF
    Purpose: To investigate the association between the apolipoprotein E (APOE) E4 dementia-risk allele and prospective longitudinal retinal thinning in a cohort study of suspect and early manifest glaucoma. Design: Retrospective analysis of prospective cohort data. Participants: This study included all available eyes from participants recruited to the Progression Risk of Glaucoma: Relevant SNPs [single nucleotide polymorphisms] with Significant Association (PROGRESSA) study with genotyping data from which APOE genotypes could be determined. Methods: Apolipoprotein E alleles and genotypes were determined in PROGRESSA, and their distributions were compared with an age-matched and ancestrally matched normative cohort, the Blue Mountains Eye Study. Structural parameters of neuroretinal atrophy measured using spectral-domain OCT were compared within the PROGRESSA cohort on the basis of APOE E4 allele status. Main Outcome Measures: Longitudinal rates of thinning in the macular ganglion celleinner plexiform layer (mGCIPL) complex and the peripapillary retinal nerve fiber layer (pRNFL). Results: Rates of mGCIPL complex thinning were faster in participants harboring ≄1 copies of the APOE E4 allele (b ÂŒ e0.13 mm/year; P ≀0.001). This finding was strongest in eyes affected by normal-tension glaucoma (NTG; b ÂŒ e0.20 mm/year; P ÂŒ 0.003). Apolipoprotein E E4 allele carriers were also more likely to be lost to followup (P ÂŒ 0.01) and to demonstrate a thinner average mGCIPL complex (70.9 mm vs. 71.9 mm; P ÂŒ 0.011) and pRNFL (77.6 mm vs. 79.2 mm; P ÂŒ 0.045) after a minimum of 3 years of monitoring. Conclusions: The APOE E4 allele was associated with faster rates of mCGIPL complex thinning, particularly in eyes with NTG. These results suggest that the APOE E4 allele may be a risk factor for retinal ganglion cell degeneration in glaucoma.Sean Mullany, Henry Marshall, Santiago Diaz-Torres, Ella C. Berry, Joshua M. Schmidt, Daniel Thomson, Ayub Qassim, Minh-Son To, David Dimasi, Abraham Kuot, Lachlan S.W. Knight, Georgina Hollitt, Antonia Kolovos, Angela Schulz, Stewart Lake, Richard A. Mills, Ashish Agar, Anna Galanopoulos, John Landers, Paul Mitchell, Paul R. Healey, Stuart L. Graham, Alex W. Hewitt, Emmanuelle Souzeau, Mark M. Hassall, Sonja Klebe, Stuart MacGregor, Puya Gharahkhani, Robert J. Casson, Owen M. Siggs, Jamie E. Crai

    DEVELOPMENT of the MODEL of GALACTIC INTERSTELLAR EMISSION for STANDARD POINT-SOURCE ANALYSIS of FERMI LARGE AREA TELESCOPE DATA

    Get PDF
    Most of the celestial \u3b3 rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20\ub0 and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within \u2dc4\ub0 of the Galactic Center

    Charge Transfer Reactions

    Full text link

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    • 

    corecore