512 research outputs found
Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations
The appearance of "magic" heights of Pb islands grown on Cu(111) is studied
by self-consistent electronic structure calculations. The Cu(111) substrate is
modeled with a one-dimensional pseudopotential reproducing the essential
features, i.e. the band gap and the work function, of the Cu band structure in
the [111] direction. Pb islands are presented as stabilized jellium overlayers.
The experimental eigenenergies of the quantum well states confined in the Pb
overlayer are well reproduced. The total energy oscillates as a continuous
function of the overlayer thickness reflecting the electronic shell structure.
The energies for completed Pb monolayers show a modulated oscillatory pattern
reminiscent of the super-shell structure of clusters and nanowires. The energy
minima correlate remarkably well with the measured most probable heights of Pb
islands. The proper modeling of the substrate is crucial to set the
quantitative agreement.Comment: 4 pages, 4 figures. Submitte
Schwinger boson theory of anisotropic ferromagnetic ultrathin films
Ferromagnetic thin films with magnetic single-ion anisotropies are studied
within the framework of Schwinger bosonization of a quantum Heisenberg model.
Two alternative bosonizations are discussed. We show that qualitatively correct
results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the
Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite
temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective
anisotropies as functions of exchange interaction, magnetic anisotropies,
external magnetic field, and temperature for arbitrary values of the spin
quantum number. Magnetic reorientation transitions and effective anisotropies
are discussed. The results obtained by Schwinger boson mean-field theory are
compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as
publishe
Thermodynamic Description of the Relaxation of Two-Dimensional Euler Turbulence Using Tsallis Statistics
Euler turbulence has been experimentally observed to relax to a
metaequilibrium state that does not maximize the Boltzmann entropy, but rather
seems to minimize enstrophy. We show that a recent generalization of
thermodynamics and statistics due to Tsallis is capable of explaining this
phenomenon in a natural way. The maximization of the generalized entropy
for this system leads to precisely the same profiles predicted by the
Restricted Minimum Enstrophy theory of Huang and Driscoll. This makes possible
the construction of a comprehensive thermodynamic description of Euler
turbulence.Comment: 15 pages, RevTe
Slabs of stabilized jellium: Quantum-size and self-compression effects
We examine thin films of two simple metals (aluminum and lithium) in the
stabilized jellium model, a modification of the regular jellium model in which
a constant potential is added inside the metal to stabilize the system for a
given background density. We investigate quantum-size effects on the surface
energy and the work function. For a given film thickness we also evaluate the
density yielding energy stability, which is found to be slightly higher than
the equilibrium density of the bulk system and to approach this value in the
limit of thick slabs. A comparison of our self-consistent calculations with the
predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.
Scenarios to limit environmental nitrogen losses from dairy expansion
peer-reviewedIncreased global demand for dairy produce and the abolition of EU milk quotas have resulted in expansion in dairy production across Europe and particularly in Ireland. Simultaneously, there is increasing pressure to reduce the impact of nitrogen (N) losses to air and groundwater on the environment. In order to develop grassland management strategies for grazing systems that meet environmental targets and are economically sustainable, it is imperative that individual mitigation measures for N efficiency are assessed at farm system level. To this end, we developed an excel-based N flow model simulating an Irish grass-based dairy farm, to evaluate the effect of farm management on N efficiency, N losses, production and economic performance. The model was applied to assess the effect of different strategies to achieve the increased production goals on N utilization, N loss pathways and economic performance at farm level. The three strategies investigated included increased milk production through increased grass production, through increased concentrate feeding and by applying a high profit grass-based system. Additionally, three mitigation measures; low ammonia emission slurry application, the use of urease and nitrification inhibitors and the combination of both were applied to the three strategies. Absolute N emissions were higher for all intensification scenarios (up to 124 kg N haâ1) compared to the baseline (80 kg N haâ1) due to increased animal numbers and higher feed and/or fertiliser inputs. However, some intensification strategies showed the potential to reduce the emissions per ton milk produced for some of the N-loss pathways. The model showed that the assessed mitigation measures can play an important role in ameliorating the increased emissions associated with intensification, but may not be adequate to entirely offset absolute increases. Further improvements in farm N use efficiency and alternatives to mineral fertilisers will be required to decouple production from reactive N emissions
Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress
Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus
Wnt signalling and cancer stem cells
[Abstract] Intracellular signalling mediated by secreted Wnt proteins is essential for the establishment of cell fates and proper tissue patterning during embryo development and for the regulation of tissue homeostasis and stem cell function in adult tissues. Aberrant activation of Wnt signalling pathways has been directly linked to the genesis of different tumours. Here, the components and molecular mechanisms implicated in the transduction of Wnt signal, along with important results supporting a central role for this signalling pathway in stem cell function regulation and carcinogenesis will be briefly reviewed.Ministerio de Ciencia e InnovaciĂłn; SAF2008-0060
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
Investigation of autosomal genetic sex differences in Parkinson's disease
Objective: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average similar to 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner.Methods: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases.Results: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (similar to 20%).Interpretation: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients.Neurological Motor Disorder
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
- âŠ