344 research outputs found
Structure of the Hsp110:Hsc70 nucleotide exchange machine.
Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein\u27s NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs
Estimating LGD Correlation
The paper proposes a new method to estimate correlation of account level Basle II Loss Given Default (LGD). The correlation determines the probability distribution of portfolio level LGD in the context of a copula model which is used to stress the LGD parameter as well as to estimate the LGD discount rate and other parameters. Given historical LGD observations we apply the maximum likelihood method to estimate the best correlation parameter. The method is applied and analyzed on a real large data set of unsecured retail account level LGDs and the corresponding monthly series of the average LGDs. The correlation estimate comes relatively close to the PD regulatory correlation. It is also tested for stability using the bootstrapping method and used in an efficient formula to estimate ex ante one-year stressed LGD, i.e. one-year LGD quantiles on any reasonable probability level
Quaternary structure independent folding of voltage-gated ion channel pore domain subunits
Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins
First direct measurement of the total cross section of 12C(alpha,gamma)16O
The total cross section of 12C(alpha,gamma)16O was measured for the first
time by a direct and ungated detection of the 16O recoils. This measurement in
inverse kinematics using the recoil mass separator ERNA in combination with a
windowless He gas target allowed to collect data with high precision in the
energy range E=1.9 to 4.9 MeV. The data represent new information for the
determination of the astrophysical S(E) factor.Comment: 5 pages, 3 figures, 1 table, accepted for publication Eur.Phys.J. A
(Online first available
Time Course of the Neural Activity Related to Behavioral Decision-Making as Revealed by Event-Related Potentials
Objective: To study the time course of the electrocortical activity evoked by gains and
losses in the Iowa Gambling Task (IGT), the brain sources of this electrical activity, and its
association with behavioral parameters of task performance in order to achieve a better
knowledge of decision-making processes.
Method: Event-related potentials (ERPs) were obtained from a 64-channel EEG in
25 participants when performing the IGT. Brain source localization analyses of the ERP
components were also assessed.
Results: ERP amplitudes were sensitive to gains and losses. An early fronto-central
negativity was elicited when feedback was provided for both gains and losses, and
correlated with the number of gains at FCz and with the number of both gains and
losses at Cz. The P200 component had larger amplitudes to losses and correlated
positively with the number of losses. Feedback related negativity (FRN) was higher at
frontal, temporal and occipital electrodes in trials with monetary losses. In addition, trials
with monetary losses elicited larger P300 magnitudes than trials with monetary gains at
all electrode localizations.
Conclusions: All ERP components (except P300) were related to participants’
performance in the IGT. Amplitudes of P200 and P300 were associated with the
conscious recognition of the error during the decision-making. Performance data and
source analysis underline the importance of the medial prefrontal cortex when processing
feedback about monetary losses in the IGT.This research was supported by grants from the Spanish
Ministry of Science and Innovation (Ministerio de Ciencia y
TecnologÃa), European Regional Development Funds (ERDF)
and Ministry of Economy, Industry and Competitiveness
(Ministerio de EconomÃa, Industria y Competitividad, Gobierno
de España). References: PSI2008-04394, PSI2017-88388-C4-1-R
and PSI2017-88388-C4-3-R
The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering
DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.Fil: Iglesias, Francisco Manuel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Bruera, Natalia Alejandra. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Marino, Cristina Ester. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Lorenzi, Hernán. J. Craig Venter Institute; Estados UnidosFil: Mateos, Julieta Lisa. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Coupland, George. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Departamento de Ciencias Exactas; Argentin
Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization
Crystal Structures of the ATPase Domains of Four Human Hsp70 Isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78
The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1
- …