31 research outputs found

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Denitrification in drained and rewetted minerotrophic peat soils in Northern Germany (Pohnsdorfer Stauung)

    No full text
    This study was conducted to assess the nitrogen removal potential of a minerotrophic peatland in Northern Germany, where hydrological conditions were partly restored in the beginning of the 1990s. Actual denitrification and the effect of nitrate (NO3-) and glucose additions on denitrification rates were determined in two flooded and one drained histosols in spring and summer 1998. In the flooded soils, denitrification was insignificant, but the drained field emitted significant rates. Additions of NO3- stimulated denitrification at all sites in spring and summer, whereas glucose additions had no effect. Low NO3- concentration in floodwater was obviously limiting denitrification in the flooded soils. In the drained soil, a coupled nitrification/denitrification might explain the low, but significant denitrification rates. No spontaneous production of nitrous oxide occurred in the flooded soils, whereas at the drained site an increase in spontaneous nitrous oxide concentration was measured during incubation in the summer samples. The suggested introduction of NO3- rich water from a stream flowing through the area would apparently induce denitrification in the flooded fields

    Nitrogen retention and loss from ecosystems of the Bornh&ouml;ved Lake district.

    No full text
    The challenges in ecosystem science encompass a broadening and strengthening of interdisciplinary ties, the transfer of knowledge of the ecosystem across scales, and the inclusion of anthropogenic impacts and human behavior into ecosystem, landscape, and regional models. The volume addresses these points within the context of studies in major ecosystem types viewed as the building blocks of central European landscapes. The research is evaluated to increase the understanding of the processes in order to unite ecosystem science with resource management. The comparison embraces coastal lowland forests, associated wetlands and lakes, agricultural land use, and montane and alpine forests. Techniques for upscaling focus on process modelling at stand and landscape scales and the use of remote sensing for landscape-level model parameterization and testing. The case studies demonstrate ways for ecosystem scientists, managers, and social scientists to cooperate
    corecore