2,416 research outputs found
Tuning the interactions between electron spins in fullerene-based triad systems
A series of six fullerene-linker-fullerene triads have been prepared by the stepwise addition of the fullerene cages to bridging moieties thus allowing the systematic variation of fullerene cage (C60 or C70) and linker (oxalate or terephthalate) and enabling precise control over the inter-fullerene separation. The fullerene triads exhibit good solubility in common organic solvents, have linear geometries and are diastereomerically pure. Cyclic voltammetric measurements demonstrate the excellent electron accepting capacity of all triads, with up to 6 electrons taken up per molecule in the potential range between -2.3 and 0.2 V (vs. Fc+/Fc). No significant electronic interactions between fullerene cages are observed in the ground state indicating that the individual properties of each C60 or C70 cage are retained within the triads. The electron-electron interactions in the electrochemically generated dianions of these triads, with one electron per fullerene cage were studied by EPR spectroscopy. The nature of electron-electron coupling observed at 77 K can be described as an equilibrium between a doublet and triplet state biradical which depends on the interfullerene spacing. The shorter oxalate-bridged triads exhibit stronger spin-spin coupling with triplet character, while in the longer terephthalate-bridged triads the intramolecular spin-spin coupling is significantly reduced
A grid-enabled web service for low-resolution crystal structure refinement
The deformable elastic network (DEN) method for reciprocal-space crystallographic refinement improves crystal structures, especially at resolutions lower than 3.5 Å. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements
Recommended from our members
Climate-induced speleothem radiocarbon variability on Socotra Island from the Last Glacial Maximum to the Younger Dryas
In this study, the dead carbon fraction (DCF) variations in stalagmite M1-5 from Socotra Island in the western Arabian Sea were investigated through a new set of high-precision U-series and radiocarbon (14C) dates. The data reveal an extreme case of very high and also climate-dependent DCF. For M1-5, an average DCF of 56.2±3.4% is observed between 27 and 18kyrBP. Such high DCF values indicate a high influence of aged soil organic matter (SOM) and nearly completely closed-system carbonate dissolution conditions. Towards the end of the last glacial period, decreasing Mg/Ca ratios suggest an increase in precipitation which caused a marked change in the soil carbon cycling as indicated by sharply decreasing DCF. This is in contrast to the relation of soil infiltration and DCF as seen in stalagmites from temperate zones. For Socotra Island, which is influenced by the East African-Indian monsoon, we propose that more humid conditions and enhanced net infiltration after the Last Glacial Maximum (LGM) led to dense vegetation and thus lowered the DCF by increasing 14CO2 input into the soil zone. At the onset of the Younger Dryas (YD) a sudden change in DCF towards much higher, and extremely variable, values is observed. Our study highlights the dramatic variability of soil carbon cycling processes and vegetation feedback on Socotra Island manifested in stalagmite DCF on both long-term trends and sub-centennial timescales, thus providing evidence for climate influence on stalagmite radiocarbon. This is of particular relevance for speleothem studies that aim to reconstruct past atmospheric 14C (e.g., for the purposes of 14C calibration), as these would rely on largely climate-independent soil carbon cycling above the cave. © 2020 Copernicus GmbH. All rights reserved
Trust and the acquisition and use of public health information
Information is clearly vital to public health, but the acquisition and use of public health data elicit serious privacy concerns. One strategy for navigating this dilemma is to build ’trust’ in institutions responsible for health information, thereby reducing privacy concerns and increasing willingness to contribute personal data. This strategy, as currently presented in public health literature, has serious shortcomings. But it can be augmented by appealing to the philosophical analysis of the concept of trust. Philosophers distinguish trust and trustworthiness from cognate attitudes, such as confident reliance. Central to this is value congruence: trust is grounded in the perception of shared values. So, the way to build trust in institutions responsible for health data is for those institutions to develop and display values shared by the public. We defend this approach from objections, such as that trust is an interpersonal attitude inappropriate to the way people relate to organisations. The paper then moves on to the practical application of our strategy. Trust and trustworthiness can reduce privacy concerns and increase willingness to share health data, notably, in the context of internal and external threats to data privacy. We end by appealing for the sort of empirical work our proposal requires
Giant growth rate in nano-oxidation of p-silicon surfaces by using ethyl alcohol liquid bridges
We demonstrate that local oxidation nanolithography can be performed in liquid environments different from aqueous solutions with a significant improvement in the aspect ratio of the fabricated motives. Here, we perform a comparative study of noncontact atomic force microscopy oxidation
experiments in water and ethyl alcohol. The growth rate of local oxides can be increased by almost an order of magnitude by using oxyanions from ethyl alcohol molecules. We propose that the enhanced growth rate is a consequence of the reduction of the trapped charges within the growing oxide. The present results open the possibility of using local oxidation nanolithography to directly fabricate vertical oxide structures while keeping lateral sizes in the nanometer range.This work was supported by the European Commission (MONA-LISA, G5RD-2000-00349).Peer reviewe
Implicit complexity for coinductive data: a characterization of corecurrence
We propose a framework for reasoning about programs that manipulate
coinductive data as well as inductive data. Our approach is based on using
equational programs, which support a seamless combination of computation and
reasoning, and using productivity (fairness) as the fundamental assertion,
rather than bi-simulation. The latter is expressible in terms of the former. As
an application to this framework, we give an implicit characterization of
corecurrence: a function is definable using corecurrence iff its productivity
is provable using coinduction for formulas in which data-predicates do not
occur negatively. This is an analog, albeit in weaker form, of a
characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar
induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mossbauer Fe-57 spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas.Peer reviewe
Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development
The formation of the biophotonic gyroid material in butterflywing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convolutedmembrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline spacefilling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient.When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template
Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains
Inverse bicontinuous cubic phases with two aqueous network domains separated by a smooth bilayer are firmly established as equilibrium phases in lipid/water systems. The purpose of this article is to highlight the generalisations of these bicontinuous geometries to polycontinuous geometries, which could be realised as lipid mesophases with three or more network-like aqueous domains separated by a branched bilayer. An analysis of structural homogeneity in terms of bilayer width variations reveals that ordered polycontinuous geometries are likely candidates for lipid mesophase structures, with similar chain packing characteristics to the inverse micellar phases (that once were believed not to exist due to high packing frustration). The average molecular shape required by global geometry to form these multi-network phases is quantified by the surfactant shape parameter, v/(al); we find that it adopts values close to those of the known lipid phases. We specifically analyse the 3etc(187 193) structure of hexagonal symmetry P63 /mcm with three aqueous domains, the 3dia(24 220) structure of cubic symmetry I 3d composed of three distorted diamond networks, the cubic chiral 4srs(24 208) with cubic symmetry P4232 and the achiral 4srs(5 133) structure of symmetry P42/nbc, each consisting of four intergrown undistorted copies of the srs net (the same net as in the QGII gyroid phase). Structural homogeneity is analysed by a medial surface approach assuming that the head-group interfaces are constant mean curvature surfaces. To facilitate future experimental identification, we provide simulated SAXS scattering patterns that, for the 4srs(24 208) and 3dia(24 220) structures, bear remarkable similarity to those of bicontinuous QGII-gyroid and QDII-diamond phases, with comparable lattice parameters and only a single peak that cannot be indexed to the well-established structures. While polycontinuous lipid phases have, to date, not been reported, the likelihood of their formation is further indicated by the reported observation of a solid tricontinuous mesoporous silicate structure, termed IBN-9, which formed in the presence of surfactants [Han et al., Nat. Chem., 2009, 1, 123]
- …