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Inverse bicontinuous cubic phases with two aqueous network domains separated

by a smooth bilayer are firmly established as equilibrium phases in lipid/water

systems. The purpose of this article is to highlight the generalisations of these

bicontinuous geometries to polycontinuous geometries, which could be realised

as lipid mesophases with three or more network-like aqueous domains separated

by a branched bilayer. An analysis of structural homogeneity in terms of bilayer

width variations reveals that ordered polycontinuous geometries are likely

candidates for lipid mesophase structures, with similar chain packing

characteristics to the inverse micellar phases (that once were believed not to exist

due to high packing frustration). The average molecular shape required by global

geometry to form these multi-network phases is quantified by the surfactant

shape parameter, v/(al); we find that it adopts values close to those of the known

lipid phases. We specifically analyse the 3etc(187 193) structure of hexagonal

symmetry P63 /mcm with three aqueous domains, the 3dia(24 220) structure of

cubic symmetry I�43d composed of three distorted diamond networks, the cubic

chiral 4srs(24 208) with cubic symmetry P4232 and the achiral 4srs(5 133)

structure of symmetry P42/nbc, each consisting of four intergrown undistorted

copies of the srs net (the same net as in the QG
II gyroid phase). Structural

homogeneity is analysed by a medial surface approach assuming that the head-

group interfaces are constant mean curvature surfaces. To facilitate future

experimental identification, we provide simulated SAXS scattering patterns that,

for the 4srs(24 208) and 3dia(24 220) structures, bear remarkable similarity to

those of bicontinuous QG
II-gyroid and QD

II-diamond phases, with comparable

lattice parameters and only a single peak that cannot be indexed to the well-

established structures. While polycontinuous lipid phases have, to date, not been

reported, the likelihood of their formation is further indicated by the reported

observation of a solid tricontinuous mesoporous silicate structure, termed IBN-9,

which formed in the presence of surfactants [Han et al.,Nat. Chem., 2009, 1, 123].
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1 Introduction

The existence of bicontinuous cubic phases in lipid systems is now widely accepted,
based on studies in the 1960s through to the 1990s.1–7 Of particular interest are the
inverse (or type II) bicontinuous cubic phases QG

II (of cubic symmetry Ia�3d), QD
II

(Pn�3m) and QP
II (Im�3m), where the spatial structure is a lipid bilayer draped on a

triply-periodic minimal surface; the aqueous domain consists of two network-like
components, separated by the bilayer, see Fig. 2. While a large range of triply-peri-
odic minimal surfaces of various topology and symmetry exist, only three cubic
examples are ubiquitously found in lipid self-assembly and related systems, such
as copolymers; these are the (G)yroid,8 the (D)iamond9 and the (P)rimitive9 surfaces
that lend their structure to the QG

II, Q
D
II and QP

II lipid phases. The geometry described
by a minimal surface is termed bicontinuous if the surface divides space into two in-
terpenetrating network-like sub-volumes, each of which is a single connected
component (i.e., mathematically, continuous), in contrast to, for example, the
aqueous domains in inverse discrete micellar mesophases of cubic and hexagonal
symmetries that consist of many disconnected globules.10 The geometry of the
network-like aqueous domains is conveniently characterised by the centred skeletal
graph or net, see Fig. 2.
The second characteristic feature of the inverse bicontinuous phases is the fact

that they form smooth and homogeneous manifold surfaces with a very small
degree of spatial variation in terms of surface curvatures11,12 and also channel
diameters13,14—properties that relate to the free energies of the self-assembled
systems through the concepts of bending rigidity, packing frustration and chain
stretching.15–17

This article explores a class of multi-network or polycontinuous geometries that
share the network-like nature of the aqueous domains with the established bicontin-
uous cases, but not the global manifold-like smoothness of the bilayer. While the
bicontinuous phases contain two aqueous network-like compartments, these
multi-network mesophase geometries (as yet unobserved in experimental lipid
systems) have three, four or more network-like aqueous domains. For example,
the so-called 3etc(187 193) structure, shown in Fig. 1 and 3, consists of three inter-
grown identical etc networks.
Even for the polycontinuous geometries studied here, the head-group surface (that

is, the interface separating the hydrophobic bilayer from the aqueous domains) is a
smooth surface; in the remainder of this article it is modelled by a constant mean
curvature (CMC) surface,19 as is commonly assumed for cubic bicontinuous lipid
systems.20

However, in contrast to the manifold-like head-group surface, the bilayer mid-
surface (which does not represent a physical interface) cannot be a smooth surface
everywhere but rather must have triple lines along which three patches meet; these
triple lines necessarily arise from the fact that the surface separates three or more
network-like domains. In the bicontinuous cubic phases, the bilayer mid-surface is
a globally manifold-like smooth surface, in fact it is generally treated as the triply-
periodic minimal surface itself. In the multi-network phases, the bilayer mid-surface
can be modelled as a branched minimal surface, consisting of smooth minimal
surface patches (locally corresponding to interfaces between two of the aqueous
domains) with three of them meeting along triple-lines (corresponding to points in
the bilayer that are equidistant to three aqueous domains). For the case of tetracon-
tinuous structures, four triple-lines can meet at vertices equidistant to all four
domains.
Fig. 1(c) shows the branched bilayer mid-surface of the 3etc(187 193) mesophase

geometry; in that case, the triple-lines are straight lines along the crystallographic c-
axis coincident with some of the three-fold symmetry axes. Fig. 4 shows a different
example of a three-network structure, called 3dia(24 220) and composed of three in-
terthreaded diamond networks (the same as the net of the QD

II phase, only slightly
216 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 (a) An artist’s impression of the hypothetical inverse tricontinuous 3etc(187 193) lipid
phase geometry. The structure is composed of three aqueous domains (blue, purple and orange
nets) each of which has a network-like shape centred on a periodic hexagonal etc net (see also
Fig. 3). These aqueous domains are separated by a lipid bilayer which, similar to the bilayer in
the inverse hexagonal columnar phase HII, is branched. The bilayer mid-surface, illustrated in
(b) and (c), is a branched and warped surface that consists of smooth surface patches and triple
branch-lines where three surface patches meet at 120� degree angles (black line along the crys-
tallographic c axis).
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distorted since one dimension is compressed by a factor of
ffiffiffi
2

p
). The triple-lines in

this case are arranged in the G-rod packing24 of symmetry Ia�3d.
These branched surfaces have been termed multi- or poly-continuous,25–28 in

analogy to the term bicontinuous25–28 for surfaces that divide space into two
network-like compartments. More specifically, the term tricontinuous is used for a
system with three interpenetrating nets and tetracontinuous for a surface that sepa-
rates four interpenetrating nets.
Here, we refer to the different surface geometries by names that contain the

number of interthreaded nets and the name of the net; in parentheses, we provide,
first, the coloured symmetry group of the structure (applicable if all nets are distinct)
and, second, the uncoloured symmetry group of the structure (applicable if the inter-
threaded nets are identical, as is the case for the mesophases proposed in this article).
Symmetry groups are specified by their numbers as listed in ref. 21. This scheme is
similar to the names used in ref. 29, with the addition of the uncolored symmetry
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 217
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Fig. 4 The 3dia(24 220) geometry consisting of three distorted diamond (dia) nets. For clarity,
the CMC surfaces bounding the three aqueous domains are displayed with different colours; in
the mesophases described here the aqueous domains are indistinguishable.

Fig. 3 The 3etc(187 193) geometry of hexagonal symmetry with three intertwined aqueous
domains. The aqueous domains are bound by CMC surfaces and the mid-surface of the bilayer
has (vertical) branch lines along which three patches meet (right). For clarity, the CMC surfaces
bounding the three aqueous domains are displayed with different colours; in the mesophases
described here the aqueous domains are indistinguishable. This geometry (with a ¼ 8.84 nm
and c ¼ 8.43 nm) has been asserted as the spatial structure of the IBN-9 mesoporous silicate.18

Fig. 2 Geometry of the conventional Ia�3d inverse bicontinuous QG
II phase, based on the

2srs(230 214) nets: (a) two aqueous domains, given by CMC surfaces centred on two (enantio-
meric) srsnets, are separatedbya lipid bilayer. (b)Themedial surface representing themid-surface
of the bilayer is the same as theminimalH¼ 0 gyroid surface of symmetry Ia�3d, within numerical
accuracy. For clarity, the CMC surfaces bounding the two aqueous domains are displayed with
different colours; in the mesophases described here the aqueous domains are indistinguishable.

218 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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group. Table 1 summarises the names and symmetries of the polycontinuous struc-
tures studied here.
Even from a purely geometric perspective, our understanding of polycontinuous

surfaces is still in its infancy. One of the first examples of a tricontinuous surface
is the global extension of Elser’s cubic Archimedean screw,30 a branched surface
separating three channels each of which is represented by the srs net (the same net
as in the QG

II-gyroid phase). Other examples were proposed by Schoen (‘‘integral vari-
folds’’8) and by Hyde and co-workers.25–28 If a branched minimal surface is the result
of area minimisation, it satisfies Plateau’s laws (facets meet at 120� angles along
triple-lines, and triple-lines meet at tetrahedral angles at four-fold vertices) and
can be interpreted as dry liquid foams with infinite cells.27,30 (Note that below we
do not derive the branched surfaces from an area minimisation principle, but rather
as the centred mid-plane between network domains bound by CMC surfaces, in
contrast to the construction of ref. 29. Whether these two different constructions
lead to the same branched surface (and if so, for which values of h0) is an interesting
question for future research.)
Both topologically and geometrically, many aspects of polycontinuous surfaces

are closely related to the intergrowth of periodic networks. Just as the bicontinuous
gyroid is the interface between two intergrown srs nets, all polycontinuous surfaces
can be interpreted as the dividing interface between multiple intergrown periodic
nets. The intergrowth of nets was addressed (albeit not comprehensively) by Wells31,
who was, for example, aware of the possibility to interthread four srs nets; a number
of multiply intergrown nets (that are of relevance for metal–organic frameworks) are
described in the Reticular Chemistry Structure Resource database.22,23 A promising
systematic approach for the enumeration of multiply-intergrown nets of arbitrary
complexity is the projection of forests (packings of unconnected trees) in the hyper-
bolic plane onto triply-periodic minimal surfaces.26,32,33

Experimental or simulated realisations of polycontinuous geometries are being
explored in a few distinct systems with important differences: Hyde et al. have
proposed tricontinuous surfaces as a natural candidate for the self-assembly of
star-shaped molecules with three mutually immiscible arms in a radial arrange-
ment,29 such as mikto-arm star copolymers34–36 and star polyphiles.37 By microphase
separation, the three immiscible components self-assemble into three distinct nano-
domains. The molecular centres of such molecules are located on the branch lines
where these three domains meet (the triple lines discussed above) and the interface
between these domains can be regarded as a branched surface. Many different struc-
tures formed by such tri-arm stars have been reported based on experiments34,36,38

and simulations.39,40 However, to date, there are only hints towards the existence
Fig. 5 The chiral 4srs(24 208) geometry consisting of four same-handed srs networks (the
same network as that of the well-known QG gyroid phase). For clarity, the CMC surfaces
bounding the four aqueous domains are displayed with different colours; in the mesophases
described here the aqueous domains are indistinguishable.

220 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2fd20112g


Pu
bl

is
he

d 
on

 2
5 

Ju
ne

 2
01

2.
 D

ow
nl

oa
de

d 
by

 M
U

R
D

O
C

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
04

/0
4/

20
16

 0
7:

48
:1

7.
 

View Article Online
of tricontinuous structures, in which each of the domains forms a single connected
network.34,41

Importantly, in these instances, the existence of three distinct compartments or
domains directly reflects the molecular architecture with three immiscible parts.
While the three domains may be geometrically the same, each of them represents
a chemically distinct molecular component. This is in contrast to the hypothetical
systems proposed in this article, where all aqueous domains are identical and the
lipid molecules are amphiphilic, with only two (and not three) immiscible moieties,
one polar and one hydrophobic.
A ‘‘tricontinuous’’ Im�3m thermotropic liquid crystal phase has also been reported,

based on three intergrown networks.42 This phase is more closely related to the struc-
tures proposed in this article in that the constituent molecules consist of two immis-
cible parts only; the hydrocarbon tails fill the matrix between three networks (two of
which are identical) formed by the aromatic domains. The dissimilar network is in-
tergrown between the two identical networks, such that the surface between these is
not branched. Therefore, this structure is not tricontinuous in the strict sense of our
terminology.29 The theoretical possibilty of polycontinuous metal organic frame-
works has been mentioned in ref. 88
The experimental realisation of a tricontinuous system that is most closely related

to the predictions of this article is the tricontinuous mesoporous silicate IBN-9 with
hexagonal symmetry reported by Han et al.18,43–45 This material has been reported to
contain three hollow channels following the nets of the 3etc(187 193) structure (see
Fig. 3) with a solid ‘‘matrix’’ of amorphous silicate forming a periodic branched
sheet, with a unit cell size a z 8.9 nm and c z 8.4 nm. IBN-9 was synthesised ac-
cording to methods developed for mesoporous silicates under alkaline conditions,
that is, the self-assembly of surfactant molecules in an aqueous solution (of
ammonia) in the presence of tetraethoxysilane (TEOS) as a silica source, heated
to 50 �C for 24h, then calcined at 550 �C.43 While the earliest work43 used a
custom-designed cationic surfactant (denoted S2–C14), the structure has now been
replicated with the more conventional surfactant, cetyl trimethylammonium
bromide (CTAB).44

With the noteworthy exception of the tricontinuous mesoporous material IBN-9,
all mesoporous inorganic phases formed in the presence of amphiphilic molecules
adopt mesostructures that are very similar to known liquid crystalline mesophases.
It is likely that the new tricontinuous material also has a liquid crystalline counter-
part with the same mesostructure, though no example has been reported to date. If
existent, it is very likely that IBN-9’s liquid crystalline counterpart is a direct (type I)
phase, see Fig. 7. For two other mesoporous silicate geometries,46,47 MCM-48 (with
an amorphous silica sheet draped onto the gyroid TPMS48) and MCM-41 (cylin-
drical hollow tubes in amorphous silica), it has been reported49 that the silica ‘‘fills’’
the aqueous domains; MCM-48 is templated from a type-I (or direct) surfactant
phase QG

I with hydrophobic network domains separated by a water-filled matrix
(as observed in a similar surfactant system50). In analogy, one may expect IBN-9
to be templated from a type-I 3etc(187 193) phase. If this is indeed the case, the anal-
ysis below—for the likelihood of the formation of inverse (type II) polycontinuous
cases—is only of indirect relevance to the formation of IBN-9.
Much of the phase behaviour and many of the adopted spatial structures can be

rationalised by purely geometric considerations;51 in particular, the phase sequence
observed with changes in experimental parameters. In a nutshell, one reduces the
self-assembly process to a geometric packing problem of identical particles. The
particle shape is largely quantified by the surfactant packing parameter, s0 ¼ vm/
(amlm), where am is the effective head-group area, vm is the volume and lm is the
length of the (fluctuating) lipid tail,51–55 with an implicit assumption that particles
are monodisperse in volume (or size). The actual chemical parameters, such as
salt concentration, temperature, etc. tune the molecular shape, which is the effective
variable that determines the resulting self-assembled spatial structure. For example,
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 221
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an increased salt concentration leads to a reduction of the effective head-group area
for charged surfactants, as repulsive electrostatic interactions between the polar
head-groups are more strongly screened.
Through a theorem known as Steiner’s theorem, which states that the volume in

the normal direction from a surface patch, up to a distance l, is a polynomial in lwith
the surface curvatures as the coefficients, the surfactant shape parameter relates to
surface curvatures (see also eqn (5)) and, hence, to the wide field of Helfrich func-
tionals and preferred curvature energies.15,51–56

The idea underlying the calculation of free energies of the self-assembly process is
simple: how favourable a spatial structure is for the self-assembly of lipids of a given
shape depends on how similar the space available to each molecule is to the shape of
the molecule itself. This principle is elucidated by the following construction: for a
given spatial configuration of lipid molecules—in equilibrium or not—the hydro-
phobic domain is tessellated into small volume elements (‘‘volumes’’), each of which
corresponds to the region of space associated with a particular lipid molecule. This
could be achieved, for example, by a Voronoi construction. The self-assembly
process then favours spatial structures with minimal deviations of the shape of the
molecule from the shape of the volume available to that molecule. Two factors
contribute to this:
First, the average shape of all volume elements should match the molecular shape.

This leads to the conclusion that molecules with s0 ¼ 1 should form flat lamellar
structures, with s0 ¼ 1/3 for spherical micelles, s0 ¼ 1/2 for cylindrical columns
and those with s0 > 1 form inverse structures.
Second, variations of the shape of the volume elements at different points in the

adopted spatial structure are possible; while the shapes of the volume elements are
the same at all points for direct micellar and columnar phases (with lipids pointing
inwards), variations necessarily occur for inverse micellar and columnar phases and
for both direct and inverse bicontinuous phases. Therefore, even though the average
shape of the volume elements may match the molecular shape, the agreement
between molecular shape and the shape of the volume elements varies from molecule
to molecule. This phenomenon has become known as frustration or (lack of) homo-
geneity, with bending frustration denoting the variations of curvature throughout
the structure and stretching frustration denoting the variations in the length of the
volume elements (or bilayer half-width).11,12,14,16,17,20,54,57–60

This geometric approach of preferred shape is explored in this article, with respect
to the formation of inverse polycontinuous mesophases with more than two
network-like aqueous compartments. Specifically, with respect to packing and chain
stretching, it is easy to leap to the conclusion that the branched nature of the lipid
bilayer introduces a large degree of chain stretching and effectively prevents these
phases from forming. However, this brings up the analogy of the inverse cubic
and inverse hexagonal micellar phases, which also exhibit bilayer branching. These
branched inverse micellar phases are now part of the standard phase diagram of lipid
self-assembly.10,61,89,90

In this article, we analyse hypothetical polycontinuous geometries as candidate
structures for lipid self-assembly under the following assumptions: the self-assem-
bled system consists of three or four identical network-like aqueous domains, termed
�K, centred on periodic intertwined (or interthreaded) networks. The aqueous
domains are bound by surfaces, S, of a constant mean curvature (CMC) with the
same topology and symmetry as the underlying network; h0 denotes the value of
the mean curvature. The aqueous domains are separated by a hydrophobic matrix,
K (the complement E3\ �K of �K), representing the branched lipid bilayer, with lipid
head-groups sitting on the surface S and lipid tails pointing into the matrix domain.
We analyse the 3etc(187 193) geometry of hexagonal P63/mcm symmetry

(cf. Fig. 3), the chiral 4srs(24 208) geometry of cubic P4232 symmetry (cf. Fig. 5)
consisting of four same-handed srs nets, the achiral 4srs(5 133) geometry of four
intertwined srs, two right-handed and two left-handed, of tetragonal symmetry
222 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 The achiral 4srs(5 133) geometry consisting of four srs networks (the same network as
that of the well-known QG gyroid phase), two right-handed and two left-handed. For clarity,
the CMC surfaces bounding the four aqueous domains are displayed with different colours;
in the mesophases described here the aqueous domains are indistinguishable.

Fig. 7 Inverse (type II) and direct (type I) conceptions of the 3etc(187 193) structure. In
inverse phases, which are the focus of this article, the network domains are water-filled and
the matrix domain in between the water channels is occupied by the lipids. In direct phases
(type I), the network domains are hydrophobic representing the lipid tails and the intermediate
space is water.
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P42/nbc with c=a ¼ 1=
ffiffiffi
2

p
(cf. Fig. 6) and the 3dia(24 220) geometry of three dis-

torted diamond networks of cubic symmetry I�43d (cf. Fig. 4).
Table 1 summarises the symmetry groups of these polycontinuous geometries (col-

oured and uncoloured groups) and Table 2 provides maximal bilayer volume frac-
tions for these polycontinuous geometries.
2 Structural homogeneity and surfactant shape parameter

The conclusions of this article are based on an analysis of structural homogeneity,
quantified by the degree of variation of both local bilayer width and local shape vari-
ation. We identify the spatially-varying half-width d(p) of the (branched) bilayer at
points p on S as well as the local volume element dK(p) that represents the section, or
‘‘volume element’’, of the bilayer that is associated with a small surface patch dS(p)
at point p on the head-group surface S; dS(p) can be considered to represent a single
molecular head-group, see Fig. 8.
The construction of both the local volume elements dK(p) and the measurement of

the bilayer half-width d(p) is conceptually simple (see Fig. 8) and draws on the
medial surface (or axis) construction13,14,60,62,63 (see also ref. 64 and 65). Consider
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 223
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Table 2 Structural data for the polycontinuous space partitions. Hmin is a rough approxima-

tion of the minimal mean curvature, h0, for which the CMC network domains are non-overlap-

ping. fmin
BL is the corresponding volume fraction of the branched lipid bilayer (matrix domain)

and represents the smallest bilayer volume fraction that is possible for the respective geome-

tries. The value of the parameter a provides the overall structural length that does not enter

the results of Fig. 9 to 12, but is necessary when specifying Hmin. c and a refer to the values

of the uncoloured space groups that are relevant to lipid self-assembly with identical channels.

For the 4srs(5 133) and 4srs(24 208) structures, the values of Hmin and fmin
BL correspond to the

mean curvature, where the CMC surfaces bounding the four network domains have a contact

point; the value is the same for both structures as the first contact point (that develops when

decreasing h0 below Hmin) is a contact point between a pair of same-handed networks, which

are present in both structures (i.e., the branched bilayer has a point of vanishing thickness,

for h0 ¼ hmin. The minimal bilayer half-width dmin (h) ¼ minp˛S d(p) is, for h ! hmin and h

> hmin, a function that smoothly decreases to dmin (hmin) ¼ 0 for these srs geometries. For

the 3etc(187 193) structure, this is different because of the discontinuous behaviour as a func-

tion of h0 discussed in Fig. 17. At h0 ¼ hmin, the bilayer jumps from having finite width every-

where to an overlapping configuration. A configuration in which the etc network domains do

not overlap but have singular mutual contact points—as is the case for the 4srs (5 133) and 4srs

(24 208) structures at hmin—does not exist. The cubic inverse micellar Fd�3m phase is modelled

with a ratio of 1.273 for the two sphere radii r1 and r2, consistent with data from ref. 10.

Name Uncoloured a, c Hmin fmin
BL Figure

QG
II Ia�3d a ¼ 1 0 0 2

3etc(187 193) P63/mcm a ¼ 1, c ¼ 0.79 3.15 � 0.15 0.50 � 0.05 —

a ¼ 1, c ¼ 0.954 3.1 � 0.1 0.40 � 0.05 1, 3, 7

a ¼ 1, c ¼ 1.10 3.15 � 0.15 0.38 � 0.05 —

3dia(24 220) I�43d a ¼ 1 unknown unknown 4

4srs(5 133) P42/nbc a ¼ 1=
ffiffiffi
2

p
; c ¼ 1=2 2.5 � 0.1 0.30 � 0.01 6

4srs(24 208) P4232 a ¼ 0.5 2.5 � 0.1 0.30 � 0.01 5

Q227
II Fd�3m a ¼ 1 r1 ¼ 0:17;

r2 ¼ 0:22

0:33� 0:01 —

H194
II P63/mmc a ¼ 1;

c ¼ ffiffiffiffiffiffiffiffi
8=3

p
z1:633

1/(1/2)
1� pffiffiffiffiffi

18
p z0:26

—

HII p6m a ¼ 1 1/2
1�

ffiffiffi
3

p
p

6
z0:10

—
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the body K that represents the branched lipid bilayer and that is bound by the CMC
interfacial surfaces. The medial surface, MS(K), is the centred mid-surface (some-
times called backbone) of K with the defining feature that any point, q, on the medial
surface is equidistant to (at least) two closest points, p1 and p2, on the bounding
surface, S. For all of the multiply interthreaded CMC network structures considered
here, the definition of the MS can be further simplified. For these structures, the
bounding surface, S, of K evidently consists of separate CMC surfaces, Si with i
¼ 1,2,3 (tricontinuous) or i ¼ 1,2,3,4 (tetracontinuous), corresponding to the three
or four network-like aqueous domains. In these cases, the points, p1 and p2, are
always on two different surfaces, Si (bounding different aqueous domains), i.e. p1
˛ Si and p2 ˛ Sj with is j. The MS thus correctly represents the bilayer mid-surface
equidistant from the different aqueous domains.
224 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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The medial surface construction provides a concise definition of the bilayer mid-
surface, which is in agreement with intuition for the self-assembly geometries that
have been experimentally realised: for inverse hexagonal cylinder phases, HII, the
MS represents the hexagonal honeycomb structure that separates the different cylin-
drical aqueous compartments, see e.g. Fig. 3 in ref. 20 and Fig. 8. Similarly, for the
Fd�3m inverted micellar phases in binary systems, the MS traces the polyhedral cells
between the water-filled micelles (see Fig. 9 in ref. 10) and is analogous for the hexag-
onal inverse micellar phase of hexagonal symmetry P63/mmc (space group 194),
described by Shearman et al. and here denoted H194

II .
66 For the inverse bicontinuous

phases QG
II, Q

P
II and QD

II based on Schwarz’ and Schoen’s gyroid, primitive and dia-
mond minimal surfaces,8,9,67 the medial surface is very close (and possibly coincides
exactly) with the minimal surface‡, see Fig. 2 and Fig. 1 in ref. 20. For the type-I
hexagonal HI, micellar and lamellar lipid phases, the MS are simply the cylinder
rotation axes, the micellar centre points and the bilayer half-plane (when approxi-
mating the head-group interfacial surface by CMC surfaces, i.e., by cylinders,
spheres or planes).
The MS construction immediately provides a definition of the point-wise bilayer

width at point p on the head-group surface S as the distance, d(p), from p to its
corresponding point, ms(p), on the MS. As ms(p) is strictly in the surface normal
direction,13 the distance d(p) and the MS point ms(p) can be expressed by a max–
min principle: for a given point, p ˛ S, the corresponding MS point, ms(p), is the
maximally distant point in the direction of the surface normal, N(p), from p that
is still closer to p than it is to any other point p0 ˛ S, with p0 s p (the surface normal
N(p) is assumed to point into the hydrophobic domain). Therefore, one obtains

ms(p) ¼ p + d(p)N(p) (1)

with the medial surface distance function, d(p), given by

d(p) ¼ max{r ˛ E
+|D(p + rN(p),p) # D(p + rN(p),p0)cp0 ˛ S}, (2)

with the Euclidean distance D(p,p0) between two points p,p0 ˛ E
3. One may consider

the MS transform as moving point p along N(p) to p + rN(p) by a value r > 0. For
small r it is evident that p is the closest surface point on S to the translated point p +
rN(p); however, for a finite r, a different point p0 ˛ S becomes the closest surface
point to p + rN(p); the value of r at which this happens defines d(p) and the MS point
ms(p).
Below, the function d(p) is used to quantify averages and variances of bilayer

width. Through the relation of ‘‘chain stretching contributions’’ to the self-assembly
free energy, this analysis allows for predictions of the likelihood of self-assembled
experimental observation of these polycontinuous lipid structures. Chain stretching
contributions are, however, only one part of energetic description. Of equal impor-
tance are ‘‘bending contributions’’ that relate to curvature inhomogeneities and,
through the celebrated molecular shape parameter, to molecular shape. To analyse
bending contributions, we construct a local volume that allows the analysis of a
structural equivalent of the molecular shape parameter s0.
The guiding idea behind the definition of a volume element dK associated with a

given surface patch dS is to associate each point in the bilayer K with its closest
point on the interface surface, see Fig. 8. All those points in (the branched bilayer)
‡ Note the distinct difference to the use of the medial surface construction in ref. 13, 14, 60, 62
and 63. Here, we determine the MS of the branched bilayer bound by the CMC surfaces
representing the head-group interface; in this situation the MS is inside the branched bilayer
and corresponds, or is at least close, to the branched minimal surface. In ref. 13, 14, 60, 62
and 63, the MS of the bicontinuous minimal surfaces is computed and the MS is a
two-dimensional skeleton close to the nets or skeletal graphs centered in the aqueous domains.
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Fig. 8 Construction of the medial surface and the local volume element, dK(p), illustrated for
a hexagonal inverted HII phase. The medial surface is the centred mid-surface of the branched
lipid bilayer, with each medial surface point equidistant to two (or more) points on the bound-
ing surfaces, S, of two different aqueous domains. The bilayer half-width at a given interface
point, p, on the CMC head-group surface corresponds to the distance d(p) from p to its image
on the medial surface, see eqn (2). For a given surface patch, dS, on the CMC head-group
surface, the corresponding volume is defined as the space between dS and its image on the
medial surface, see eqn (3).
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K that are closer to the surface patch dS than to any other parts of the surface form
the volume dK associated with dS. If the medial surface transform ms(p) is known
for all points p in S, the volume dK associated with a surface patch dS is easily eval-
uated as

dK ¼ {p + rN(p)|p ˛ dS and 0 # r # ms(p)}. (3)

This equation states that the volume dK associated with surface patch dS is given
by all points between those of dS and their corresponding points on the medial
surface.
In the following, we use the notation dS(p) to denote the surface patch that

contains point p ˛ dS and assume that dS(p) is a small surface patch. Similarly
dV(p) denotes the volume element associated with dS(p).
In the context of lipid self-assembly, the surface patch dS represents the patch of

the interface surface that is occupied by the head-group of a particular lipid molecule
and the volume dK is the space occupied by the hydrophobic chains.
Wehence define the structural shapeparameter, s(p), as a property of the adopted or

assumed spatial geometry, which—for equilibrium configurations—should relate to
the similarly defined surfactant packing parameter s0, which characterises the molec-
ular shape, see above. The structural shape parameter is the dimensionless measure

sðpÞ ¼ vð pÞ
að pÞdð pÞ (4)

with a(p) the surface area of the surface patch dS(p), v(p) the volume of the associ-
ated volume element dK(p) and d(p) its length as measured by the medial surface
distance. (When applying eqn (4) to a large patch dS with significant variation of
d(x) over the points x ˛ dS(p), the average �d(p) ¼ Ð

dSd(p)dA/
Ð
dSdA should be

used instead of d(p).)
The bilayer half-width d(p) and the structural shape parameter s(p) are comple-

mentary with regards to the geometric characteristics they describe. The value s(p)
relates to the curvature properties of the interface, but is independent of the size
226 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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of the volume element. To see the relationship to curvature properties, consider the
equation that relates surface curvatures to the volume swept by parallel surfaces to a
given surface patch dS up to distance r (known as the Steiner formula in integral
geometry). A parallel surface of the patch dS is the surface obtained by translation
of all surface points of the patch in surface normal direction by a fixed distance r,
dSk(r) ¼ {x + rN(x)|x ˛ dS}. The region of space swept by parallel surfaces
dSk(p) as r is increased from 0 to r has volume v(p,r) ¼ ra(p) + r2a(p) �H + r3a(p) �G/
3 if r < min{k1(p),k2(p)} with the mean and Gauss curvature �H(p) ¼ Ð

dS(p)HdA
and �G(p) ¼ Ð

dS(p)GdA averaged over all points of dS(p).x Assuming that the surface
patch dS(p) is so small that variations of the mean curvatureH, the Gauss curvature
G and the medial surface distance d over its points are negligible (that is, �H(p) ¼
H(p), �G(p) ¼ G(p) and �d(p) ¼ d(p)) the Steiner formula provides a relation between
the structural shape parameter and the curvature properties of the head-group inter-
face (see chapter 4 in ref. 51)

sð pÞ :¼ vð pÞ
að pÞdð pÞ ¼ 1þHð pÞdð pÞ þ GðpÞ

3
½dð pÞ�2 (5)

While d(p) has the dimension [m] of a length, the parameter s(p) is dimension-
less, of unit [1]; s(p) is hence insensitive to the linear size or volume of the
volume element. This insensitivity to size is important for two reasons in the
context of lipid self-assembly: first, s(p) will not change with the overall length
scale of the system, that is, it is independent of the lattice parameter a as a
change in a only leads to a change of length scale for all volume elements.
Second, s(p) can adopt identical or similar values for two volume elements at
different points p1 and p2 in the structure if the surface at p2 is flatter (with
smaller curvature values) and, simultaneously, has larger d(p). In that case,
the volume elements at p1 and p2 can be of very similar shape, and hence
have similar structural shape parameter s(p1) z s(p2), while having very different
volumes v(p1) s v(p2).
For the analysis of self-assembly structures, one is not interested in spatially

resolved values of s(p) or d(p), but rather in average values and the degree of varia-
tion throughout the spatial structure. These are quantified by moments of the distri-
butions of d(p)

hdi ¼ 1

A

ð
S

dð pÞdA; and ðDdÞ2:¼
D
½d � hdi�2

E
¼ 1

A

ð
S

½dð pÞ � hdi�2dA (6)

and of s(p)

hsi ¼ 1

A

ð
S

sð pÞdA; and ðDsÞ2:¼
D
½s� hsi�2

E
¼ 1

A

ð
S

½sð pÞ � hsi�2dA (7)

where S is assumed to be a translational unit cell of the structure and A the surface
area of S.
In this article, we invoke a relationship between the molecular shape described by

the surfactant packing parameter s0 ¼ vm/(amdm) and the structural packing param-
eter s: an ensemble of identical molecules best accommodates a geometric shape S,
whose average structural shape parameter hsi is close to the molecular packing
parameter s0 (global constraint) and whose variations h[s � hsi]2i throughout the
structure are smallest (structural homogeneity favoured by the identical shape of
the constituent molecules). However, because of the size insensitivity of s it is
x The validity of this formula for a sphere of radius R is easily verified by expanding the total
volume v(p,r) ¼ v(r) � 4p/3(R + r)3 and noting that the mean curvature of a sphere with radius
R and outwards pointing normals is the positive constant H ¼ 1/R > 0; and similarly for a
cylinder.
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important to equally consider a further shape descriptor that is sensitive to overall
size: the bilayer half-width d(p) measured by the medial surface construction is a
suitable measure of the linear size of the volume elements.
This motivates the choice of hsi as a measure of the average shape of the ‘‘molec-

ular’’ tiles, with Ds :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2i � hsi2

q
and Dd :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½d � hdi�2i

q
as a measure of

structural homogeneity. Below the geometric properties of the hypothetical multi-
network geometries and the known lipid phases will be compared in terms of these
measures.
3 Average molecular shape of polycontinuous lipid phases

Fig. 9 and 10 show the mean curvature, h0/(A/VBL), normalised to a constant
surface-to-volume ratio and the average structural shape parameter hsi as a function
of the bilayer volume fraction fBL. These average shape characteristics relate to the
typical molecular shape that is globally (i.e., on average) commensurate with the
different candidate geometries.
Data are provided as a function of the bilayer volume fraction fBL ¼ VBL/V,

where VBL is the volume of the bilayer in a given space of total volume V (which
is the sum of V ¼ VBL + VAQ, if VAQ is the combined volume of all aqueous
domains).
The mean curvature is analysed comparing the different candidate geometries for

length scales such that the ratio of total bilayer volume VBL to surface area A is 1, see
Fig. 2. As the mean curvature h0 (which for all geometries analysed in this article is a
constant, except for the Fd�3m inverse micellar Q227

II phase with two distinct micellar
radii) decreases with increasing width of the aqueous domains, the monotonous
increase of h0/(A/VBL) with increasing fBL is expected and is observed as a common
feature of all geometry types.
Fig. 9 Mean curvature of the head-group interface as a function of the bilayer volume fraction
fBL, evaluated for length scales a such thatVBL/A¼ 1 is constant.VBL is the total volume of the
bilayer (such that VBL/(VBL + VAQ) ¼ fBL is the bilayer volume fraction with VAQ the
combined volume of all aqueous domains), A the surface area of the head-group interface
and h0 its (constant) mean curvature. For HII and the hexagonal inverse micellar phase H194

II ,
the lines are the analytic curves of eqn (22) and (9), all other lines are guides for the eye. Ratios
c/a of the lattice parameters for the etc(187 193) and 4srs(5 133) structures refer to the unco-
lored space groups.
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Fig. 10 Average structural shape parameter hsi indicating the molecular shape required to
form the geometries. Note that for the 4srs(5 133) and the 4srs(24 208) geometries, the data
for very low fBL corresponds to configurations where the CMC domains are almost in contact,
see also Fig. 17. Ratios c/a of the lattice parameters for the etc(187 193) and 4srs(5 133) struc-
tures refer to the uncolored space groups.
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For a fixed bilayer volume fraction, fBL, chosen in the interval [0.3,0.65] relevant
for lipid self-assembly, Fig. 9 shows that the normalised mean curvature is lowest for
the bicontinuous QG

II phase, highest for the inverse micellar phases Q227
II , H

194
II and the

columnar phase HII takes intermediate values, in line with expectations.68 (The Fd�3m
inverse micellar phase Q227

II is here modelled by 8 large and 16 small spherical micelles
per unit cell; the ratio of the large to the small radius is assumed to be 1.273, as esti-
mated in ref. 10.) The polycontinuous cases are all intermediate to the bicontinuous
cases and the columnar cylinders and, within the accuracy of our numerical analysis,
all have the same value of the normalised mean curvature (with the exception of the
achiral 4srs(5 133) structure at high values of fBL).
Fig. 10 shows the average structural shape parameter hsi (see eqn (7)) as a func-

tion of bilayer volume fraction. hsi characterises the average shape, but in contrast
to the normalised mean curvature it incorporates the bilayer width. At fixed inter-
mediate fBL, hsi is smallest for the inverse bicontinuous gyroid QG

II phase and
largest for the inverse micellar phase with the columnar hexagonal phase again
at intermediate values, in line with previous analyses (see, for example, Fig. 4.11
in ref. 51). The values for the polycontinuous cases now differ for the different
structures. For lipid volume fractions above 40%—presumably of most relevance
to lipid self-assembly—the 3etc(187 193) and the chiral 4srs(24 208) structures are
again intermediate to the bicontinuous QG

II and the inverse cylinders HII. Interest-
ingly, some polycontinuous structures (3etc(187 193) with fBL < 0.4, the single
instance of the 3dia(24 220) structure analysed here with fBL z 0.4 and the achiral
4srs(5 133) structure) can have smaller values of hsi than the bicontinuous gyroid
case. All geometries show a monotonic increase of hsi with increasing lipid bilayer
volume fraction fBL.
The conclusion to be drawn from Fig. 9 and 10 is that at least in terms of the

average molecular shape the polycontinuous phases, in particular 3etc(187 193)
and 4srs(24 208), should be commensurate with existing molecular shapes, because
their average shape measured by hsi and h0/(A/VBL) is intermediate to two cases (HII

and QG
II) that are experimentally realised.
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 229
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4 Homogeneity and packing frustration

The second determinant of phase formation, in addition to the commensurability of
the molecular shape and the average geometric properties discussed above, is the
structural homogeneity and its implications for bending and stretching frustration.
Assuming that the average geometry matches the molecular shape, the variations
throughout the structure will determine the degree of frustration—necessarily
present for all inverse mesophase structures including cylinders and micelles. We
here discuss homogeneity and packing frustration for the polycontinuous structures,
by an analysis of variances of the bilayer half-width d and of the structural packing
parameter s. Fig. 11 and 12 show the relative variances of s and d, as defined in eqn
(6) and (7).
Fig. 11 shows variations Dd of the bilayer half-width d(p), measured by the medial

surface distance from the head-group interface to the bilayer mid-surface. As the
bilayer width is a quantity of dimension [m], it is here shown relative to the average
hdi. Expectantly, the variations of the bilayer width are minimal for the bicontinuous
gyroid geometry, where the bilayer is a smooth unbranched sheet. The small degree
of variation is a signature of the modelling of the head-group surface as a CMC
surface rather than a parallel surface to the TPMS; for the bicontinuous gyroid,
these variations are approximately independent of the bilayer volume fraction
fBL. The variations for the inverse cylindrical HII phase are smaller than those of
the inverse cubic micellar Q227

II phase and than the hexagonally close-packed inverse
micellar phase H194

II ; for these geometries, the relative variations Dd/hdi become
smaller with larger bilayer volume fractions.
The values of Dd/hdi for the polycontinuous cases are, for all fBL, larger than

those of the columnar HII and the bicontinuous QG
II phase. The width variations

of the chiral 4srs(24 208) structure are, for all fBL, slightly above those of the inverse
hexagonal micellar phase H194

II . The achiral 4srs(5 133) structure is intermediate to
the inverse micellar phases, H194

II and Q227
II . The 3etc(187 193) structure (with the

same c/a ¼ 0.954 as the IBN-9 phase) has large variations Dd/hdi for low fBL similar
to the inverse micellar H194

II phase that, however, decrease more rapidly with
increasing fBL than for the other geometries; for large fBL z 70%, the variations
are comparable to the HII and the bicontinuous gyroid geometry.
Fig. 11 Relative spatial variations Dd/hdi of lipid bilayer half-width d throughout the bilayer.
The curves for HCP inverse micelles and for the HII phase are the analytic solutions of eqn (14)
and (33); all other lines are guides for the eye only. Ratios c/a of the lattice parameters for the
etc(187 193) and 4srs(5 133) structures refer to the uncolored space groups.

230 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2fd20112g


Fig. 12 Spatial variations Ds of structural shape parameter s throughout the bilayer. For the
hexagonal inverse micellar phase, we only show the analytic solution given by eqn (35) and not
computational data that deviates significantly (by a factor of approximately 2) from the
analytic curve. The origin of this deviation is the difficulty of measuring Ds, which incorporates
fourth moments hd4i of the distribution of bilayer width. This provides a caution for the accu-
racy of the data for other geometries. However, we have verified that the results presented are
consistent when representing the geometries by triangulations of different resolution.
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In terms of bilayer width variations, the inverse polycontinuous geometries are
hence fairly inhomogeneous compared to the inverse bicontinuous gyroid phase.
Nevertheless, their spatial homogeneity with respect to d is similar or smaller than
the inverse micellar H194

II phase. Similar to the inverse micellar H194
II phase, that

(despite its high degree of packing frustration) has been found,66,69 one would prob-
ably expect the polycontinuous examples to form for large bilayer volume fractions
fBL, i.e., for molecules with long chains relative to their head-group area and small
head-group area or low water content.
In terms of the structural shape parameter, s, Fig. 12 clearly demonstrates that

both the inverse bicontinuous and the inverse polycontinuous structures are far
more heterogeneous than the inverse hexagonal HII or the hexagonal inverse
micellar H194

II phase, with larger values of Ds; the cubic inverse micellar phase Q227
II

is more heterogeneous than the polycontinuous structures, owing to the two distinct
radii of curvature of the two types of micelles. While Ds of the polycontinuous
4srs(5 133), 3etc(187 193) and 3dia(24 220) is significantly larger than for the bicon-
tinuous QG

II phase, the value for the cubic and chiral 4srs(24 208) is very similar to
that of the bicontinuous QG

II gyroid phase, for a large range of bilayer volume frac-
tions, in particular around fBL z 40%.
The structural shape parameter s(p) is a more complex shape measure than the

simple bilayer (half-)width d(p). It combines aspects of the surface curvatures H(p)
and G(p) with d(p), see eqn (5). If the curvature properties are constant (as is the
case for the approximation of HII and H194

II , where the head-group surface is
modelled as cylinders and spheres), averages and variances of the parameters s
and d are closely related. For the hexagonal cylinders with constant mean curvature
H(p) ¼ Hs 0 and vanishing Gauss curvature G(p) ¼ 0 for all points on the cylinder
head-group surface, eqn (5) immediately yields hsi ¼ 1 � Hhdi, hs2i ¼ 1 � Hhdi +
H2hd2i and (Ds)2 ¼ (hd2i � hdi2) � H2. This identity is evidently also seen in
eqn (12), (14), (18) and (20) for the analytic expressions for Dd and Ds.
For the hexagonal inverse micelles, where the Gauss and mean curvatures
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 231
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Fig. 13 Homogeneity and average shape of the tricontinuous 3etc(187 193) structure as a
function of the crystallographic c/a ratio (in the uncolored symmetry group P63/mcm); the
bilayer volume fraction of 40% is close to that observed in the experimental mesoporous
IBN-9 phase, which has c/a ¼ 8.84/8.43 z 0.95. The minimum of the parabola fitted to the
data for Dd/hdi for fBL ¼ 66% is at z0.87. The average bilayer half-width hdi of dimension
[m] is for a system with a ¼ 1. Polynomials of degree two are fitted to the data as a guide
for the eyes.
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G(p) ¼ G ¼ 1/R2 and H(p) ¼ H ¼ 1/R are spatially constant (R is the cylinder or
sphere radius), combining eqn (5), (6) and (7) yields expressions for the average
and variance of s explicitly as a function of the moments of d: hsi ¼ 1 + Hhdi +
G/3hd2i and hs2i ¼ 1 + 2Hhdi + (H2 + 2G/3)hd2i + 2HGhd3i + G2/6hd4i. (The appear-
ance of higher moments of d in this formula for hs2i is consistent with the noise sensi-
tivities of the numerical computations, see caption of Fig. 12.) For surfaces with
variations of curvatures—including all bicontinuous and polycontinuous
surfaces—the moments of s are not only a function of the moments of d, but include
moments of the distributions of Gauss curvatures G and, unless H ¼ const (as is the
case for all structures discussed here), of H.
Importantly, s and its averages and higher moments are dimensionless and scale-

invariant. Hence Ds is not sensitive to spatial variations of the size of the local
volume elements, in contrast to Dd/hdi. Assuming the molecules to be largely incom-
pressible, a volume constraint appears to be required. In that sense, it seems likely
that variations in size of the local volume elements, partially covered by Dd but
not by Ds, may be a primary requirement, with variations of s a second-order effect
to favour equal shape amongst the elements with equal volume.
For the structures with cubic symmetry, i.e. 4srs(24 208) and 3dia(24 220), the sole

free parameter is the lipid volume fraction fBL. The overall length scale, given by the
lattice parameter a, does not affect the data in the form presented here. For
the tetragonal 4srs(5 133) and the hexagonal 3etc(187 193) structure, the crystallo-
graphic c/a ratio is a further free parameter that needs exploration when searching
for the optimal structure.
232 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2fd20112g


Fig. 14 Anisotropy of the surface orientation of the 3etc(187 193) geometry as function of the
c/a ratio (in the uncolored symmetry group P63/mcm), for fBL z 66% and fBL z 40%. II(w) ¼
tr(w2)/2 is the second invariant of the interface tensor wij ¼ ð1=AÞ Ð

s

ðninj � dij=3ÞdA; where A is

the surface area of S and ni the i-th component of the surface normal.63,70 A value II(w)¼ 0 indi-
cates isotropy and values >0 are deviations from isotropy. The measure II(w) is the same as
analysed in ref. 63; however, when comparing absolute values, note that the values for II(w)
shown in Fig. 3 (top) of ref. 63 are incorrect and too large by a constant factor of 10.
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Fig. 13 shows data for average shape and spatial homogeneity for the
3etc(187 193) structure as a function of the hexagonal c/a ratio, for two different
bilayer volume fractions. The key observation is that, for both fBL z 40% and
fBL z 66%, the average shape is largely independent of the c/a ratio, both in terms
of hdi and hsi. Further, it also appears that variations of the shape of dK(p) quanti-
fied by Ds/hsi are largely constant. However, the variations in relative bilayer (half-)
width Dd/hdi change significantly with c/a. At fBL z 40% the variations clearly
favour smaller c/a ratios. At fBL z 66%, the situation is different and Dd/hdi has
the most homogeneous member with a c/a ratio of approximately 0.87. Given that
all other relevant measures appear to be almost independent of c/a, one would expect
a lipid inverse 3etc(187 193) phase to have lattice ratios c/a z 0.87 (with regards to
the uncolored space group P63/mcm).
It is interesting to note that c/a ¼ 0.87 is only approximately 10% smaller than the

c/a ratio of the mesoporous IBN-9 silicate, c/a ¼ 84.3/88.4 z 0.95. This agreement
would be a strong indication of the relevance of our homogeneity analysis for the
self-assembly of polycontinuous phases if two conditions were met: (a) the lipid
precursor phase of IBN-9 is indeed an inverse phase (which is not likely to be the
case, see section 1); and (b) that the lipid volume fraction of this precursor phase
was significantly higher (z66%) than the solid volume fraction of the resulting
IBN-9 (which is z40%43). While this is unlikely to be the case, this result still
provides an expectation value for c/a for a hypothetical inverse 3etc(187 193) phase.
In ref. 63, the observation was made that the most homogeneous member of a (to-

date hypothetical) bicontinuous hexagonal mesophase based on Schwarz’s H surface
is isotropic in terms of (a) the Doi–Ohta interface tensor, and (b) in terms of the
elastic moduli of a bilayer sheet that was assumed to be homogeneous and linear-
elastic.63 This has inspired the analogous analysis, of structural isotropy of the
3etc(187 193) structure, see Fig. 7. In contrast to the hypothetical bicontinuous H
mesophase of ref. 63, no correlation between the most homogeneous member for
the fBL z 40% structures at c/a z 0.87 and structural isotropy was found. Further,
treating the branched linear bilayer of the 3etc(187 193) structure as a homogeneous
linear–elastic sheet (using the finite element methods of ref. 71–73), the structures
showed, for all c/a, an elastic tensor with a clear signature of hexagonal symmetry
that, in contrast to Schwarz’s hexagonal surface,63 does not exhibit any unexpected
degeneracies of the eigenvalues of the Mehrabadi matrix.
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 233
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5 Simulated SAXS patterns

Small angle X-ray scattering is by far the most common experimental method for
structure assignment of self-assembled lipid-containing phases. We therefore
provide SAXS powder scattering patterns (azimuthal-averaged radial scattering
intensities) for the hypothetical tetracontinuous 4srs(5 133) and 4srs(24 208) struc-
tures and the tricontinuous 3dia(24 220) structure. Interestingly, for the latter two
cases, the scattering patterns bear remarkable resemblance to swollen QG

II-gyroid
and QD

II-diamond structures—pointing to the possibility of experimental misidentifi-
cation. Our simulation method (the same as the one described in ref. 37 and 63, see
appendix A) is based on fast Fourier transform of voxelised representations; it is
validated by demonstrating good agreement between the simulated 3etc(187 193)
structure and the experimental scattering pattern for the IBN-9 mesoporous silicate
phase reported in ref. 43.
Fig. 15 (a) shows the simulated scattering pattern of the 3etc(187 193) structure

close to the experimental parameters for the 3etc(187 193) silica structure observed
by Han et al.43 The red curve represents the scattering pattern of the ideal highly
ordered 3etc(187 193) structure based on the idealised CMC-surfaces (i.e., perfectly
periodic and with all symmetries of the P63/mcm space group), computed at a highly
resolved discretization. Most of the allowed hkl reflections of the uncoloured space
group P63/mcm (No. 193 in ref. 21) are present (grey lines in the background) and
resolved in the q-range of this high resolution voxel-based simulation. Peak overlap
start does not start before about q ¼ 3 nm�1. Decreasing the spatial resolution of the
model structures brings the simulated scattering pattern, represented by the blue
curve in Fig. 15 (left), closer to the experimentally observed powder XRD pattern
in Fig. 1b of ref. 43; several of the peaks can no longer be resolved individually.
There is good agreement between these two scattering pattern, and thus our simula-
tion corroborates their reported structure. There are three main differences:
First, asymmetric peak broadening at low q-values is observed in the experimental

data set, which we assume stems from the beam profile of their instrument, and
which we have not accounted for in the simulation.
Fig. 15 (a) Simulated scattering pattern of the 3etc(187 193) structure close to the experimen-
tally observed conditions:43 the lattice parameters are a ¼ 8.84 nm, c ¼ 8.43 nm, and the
aqueous channel domains take up a volume of 59% (i.e., fBL ¼ 41%). The red curve demon-
strates data for the ideal, strictly periodic model at high spatial resolution and the blue curve
a simulation of lower resolution. The grey lines depict all allowed hkl values. (b) Simulated
SAXS patterns for different volume fractions fBL of the lipids. Interestingly, the intensity of
the (010) peak or the ratio between the (110) and (002) reflection are so sensitive to fBL that
they may well serve as an independent measure for fBL.
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Second, our simulation suggests that the experimentally indexed (120) peak has in
fact very low intensity at this channel volume fraction, and is more likely to be the
more intense, very close (121) reflection. However, this difference is subtle and may
also stem from the fact that our simulations are based on ideal CMC surfaces of
structures with homogeneous wall densities rather than the real surfaces investigated
experimentally.
Third, the first peak (010) was not observed experimentally. However, its calcu-

lated q-value of 0.821 nm�1 (or a 2q value of 1.15� when using CuKa) is very close
to the low q-limit of a conventional diffractometer.
Fig. 15 (b) shows the simulated scattering pattern of the 3etc(187 193) structure at

different lipid volume fractions fBL (corresponding to varying wall thicknesses). As
expected, the reflections remain at the same q-position, as the symmetry and unit cell
size remain unchanged. Their intensities, however, change significantly; this stems
from changes in the form factor, that is, from the scattering of local domains in
the structure. It is interesting that for example the intensity of the (010) peak, or
the ratio between the (110) and (002), is so sensitive to the channel thickness, that
they may well serve as an independent measure for it.
Fig. 16 shows the simulated scattering pattern for the three different model

structures 4srs(24 208), 4srs(5 133), and 3dia(24 220), each at two different lipid
volume fractions fBL. As in the case of the 3etc(187 193) structure discussed above,
the intensities of the hkl reflections vary significantly with the bilayer volume
fraction.
The scattering patterns and hkl indices of the 4srs(24 208) and the 4srs(5 133)

structure appear to be very different at first sight. If the peaks were indexed accord-
ing to the coloured instead of uncoloured symmetry (see Table 1), it would be more
obvious that at equal channel size most of the peaks in these two structures come to
lie at identical q-positions. The main difference between these two structures are the
intensities of the peaks, and the fact that the 4srs(5 133) has additional peaks due to
symmetry lowering from cubic to tetragonal. These additional peaks of the
4srs(5 133) structure are the (211), (212) and (321), marked in red in Fig. 16 (b).
It is interesting to note that the scattering pattern of the 4srs(24 208) structure

bears resemblance to that of a conventional bicontinuous cubic diamond structure
QD

II, frequently experimentally observed in soft matter and also as the AMS-10 mes-
oporous silica structure.74–76 The only feature present in the 4srs(24 208) pattern that
would unambiguously rule out its identification as the pattern of a conventional dia-
mond structure is the (210) reflection, marked in red in Fig. 16 (a). This reflection is
forbidden for the conventional diamond structure (symmetry Pn�3m, see Table 1).
Fig. 16 Simulated scattering pattern at two different volume fractions of (a) the chiral
4srs(24 208) structure (space group P4232 with a ¼ 5 nm), (b) the achiral 4srs(5 133) structure
(space group P42/nbc with a ¼ 10=

ffiffiffi
2

p
nm and c ¼ 5 nm) and (c) the 3dia(24 220) structure

(space group I�43d with a ¼ 10 nm). The lattice parameters were chosen such that their uncol-
oured unit cells have the same cubic box of size 10 nm.
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However, it may also have low intensity or be absent for the 4srs(24 208) structure,
particularly at low lipid volume fractions fBL.
The case is similar for the scattering pattern of the 3dia(24 220) structure depicted

in Fig. 16 (c). Most hkl reflections and roughly also the intensities are in agreement
with the conventional bicontinuous cubic gyroid QG

II, 2srs(214 230) symmetry Ia�3d.
The only hkl reflection (which may or may not be of significant intensity in the
3dia(24 220) pattern) that distinguishes the 3dia(24 220) structure from the conven-
tional gyroid structure is the (310) peak (marked in red), which is forbidden for the
space group Ia�3d.
We even expect the lattice parameters of these two polycontinuous geometries—

mis-interpreted as bicontinuous cubic phases—to differ only slightly from typical
values for the bicontinuous QG

II and QD
II phases: based on the same water content

and normalised to constant area/volume, the apparent lattice parameter of a
3dia(24 220), mis-interpreted as QG

II, and a 4srs(24 208), mis-interpreted as QD
II,

would only be enlarged by z30%. An estimate based on the same water content
and normalised bilayer thickness would only make them appear z30% and
z10% larger, respectively.
The apparent lattice parameter would be even further reduced if the phases con-

tained less water. This is not unlikely, if we consider that the polycontinuous struc-
tures have significantly smaller variations of bilayer width at smaller water content
(Fig. 11).

Concluding remarks

The polymorphism of lipids and related soft matter systems has continuously wit-
nessed the emergence of ever new spatial structures, all formed by spontaneous
self-assembly of suitably designed molecules. First came micelles in water, then
the neat and middle phases (lamellar and hexagonal phases), then Luzzati’s srs
rod structure QG

I ,
77 then inverse bicontinuous phases including QG

II (ref. 5), Q
P
II and

QD
II, then inverse micellar cubic phases,66 then inverse hexagonal micellar phases

and inverse ribbon phases.61,91 While some of these geometries were identified
without prior knowledge or expectation of a geometric model (such as Luzzati’s
initial findings of QG

I ),
77 in many instances an awareness of the structural model

was crucial for its identification in the experimental system.
The purpose of this article is to raise awareness of the geometric possibility of a

new class of network-like mesophase geometries (of type II), termed polycontinuous.
These consist of three or more aqueous network-like domains separated by a lipid
bilayer that is branched, similarly to the inverse hexagonal or inverse micellar
phases. We have here discussed specifically the tricontinuous 3etc(187 193) and
3dia(24 220) geometries and the tetracontinuous 4srs(24 208) and 4srs(5 133) geom-
etries. This choice does, however, by no means imply that other structures with three
or more interthreaded networks are not equally or more suited.
For example, the tricontinuous structure families 3pcu(160 162), 3qtz(145 180)

and 3dia(109 141) with varying c/a ratio (that have been suggested as geometries
for star-shaped molecules with mutually immiscible arms29), or the tricontinuous
3hcb(10 192) and octacontinuous 8srs(1 211) structure (that emerge from projec-
tions of hyperbolic forests onto periodic minimal surfaces25,26,28,32) are relevant.
There are more examples, many of which—in addition to the structures discussed
above—are also listed by the Reticular Chemistry Structure Resource22

(www.rcsr.anu.edu.au): the tricontinuous family (with varying c/a ratio) of the
eta-c3 and twt-c3 (P6222), the tetracontinuous dia-c4 (P4/nbm), eta-c4 (P6222),
qtz-c4 (P6222) and pcu-c4 (P4332) and the hexacontinuous dia-c6 (P42/nnm),
qtz-c6 (P6222).
It appears highly unlikely that these polycontinuous phases be found in the

well-studied phase diagrams of simple lipids in binary mixtures with water.
However, we have argued here that both in terms of typical shape (Fig. 9 and
236 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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10) and packing frustration and homogeneity (Fig. 11 and 12) the difference
between the molecular geometries that are likely to form the polycontinuous cases
and existing molecular architectures are small; hence, there is no fundamental
geometric reason that should prevent the formation of these phases in systems
that are similar to existing lipids. Therefore, we suggest to search for systems
where these phases form, by clever chemical design of the surfactant molecules
themselves or of other system parameters (molecular polydispersity, addition of
oil, proteins, silica precursor, solvents or co-surfactants). Some guidance for
this design process may come from the experimental observation of the
3etc(187 193) structure in mesoporous silicates,18,43 in particular also based on
the simple CTAB surfactant.18

This article has addressed the formation energetics of reverse (type-II) phases,
where variations of the local branched bilayer shape relate to stretching and
bending. Our focus on reverse phases should by no means exclude the possibility
of polycontinuous direct phases (of type I) with hydrophobic network domains sepa-
rated by an aqueous matrix. A geometric analysis in terms of s and d of the equiv-
alent direct structures is straight-forward, but its relevance to the self-assembly
mechanism less immediate. For example, an analysis that evaluates the variations
of the packing parameter only of the hydrophobic domain provides no insight
into why Luzzati’s QG

I phase—consisting in two hydrophobic network-like srs
domains—can form, but not a phase consisting of a single hydrophobic srs
network.{ Similarly, as long as three or four identical copies of a hydrophobic
network domain can be intergrown without overlap and as long as interactions
across the aqueous matrix are neglected, the simple geometric packing analysis of
this article cannot distinguish between a phase based on 1, 2, 3 or 4 hydrophobic
domains. However, if entropy or other forces favour the formation of a homoge-
neous shape of the aqueous matrix, the analysis of this article is relevant also to
the corresponding direct (type I) phases.
Several of the known polycontinuous geometries are spatially chiral. Out of the

geometries discussed here only the 4srs(24 208) is chiral, consisting of four equal-
handed srs nets, but several other chiral polycontinuous geometries are known,
such as the 3qtz(145 180) family, 8srs(1 211) and, in fact, also all interthreaded
geometries based on the chiral eta, qtz and twt-nets mentioned above. The homoge-
neity of the 4srs(24 208) in terms of the molecular shape parameter Ds is very close to
the bicontinuous QG

II phase and in terms of the bilayer width variations only slightly
higher than the H194

II . Considering these geometric constraints, it is conceivable that a
self-assembly process could be designed that favours the formation of the
4srs(24 208); the result would be a chiral structure with potentially striking optical
properties including discrimination between light of different circular polarisation.82

How the molecular geometry needs to be adapted to yield this result, and whether
this necessarily involves chiral constituent molecules, is a question for future anal-
ysis, most likely by simulation.
The polycontinuous geometries described here, some of an innately beautiful

visual appearance, should provide chemistry with inspirational design ideas for
self-assembly. Surely, the assertion attributed to the Greek playwright Euripides
(z400 BC) that ‘‘Mighty is geometry; joined with art, resistless.’’ equally applies to
the combination of geometry and chemistry.
{ A single srs phase (of chiral symmetry I4132) has been observed in some hard biological
systems, such as the porous chitin structure in the wing-scales of some butterfly species,78–80

where it is presumably templated from a biological cubic membrane (of achiral symmetry
Ia�3d) at a length scale of approximately a ¼ 300–350 nm, which is significantly larger than
in lipid systems, and in inorganic replicas thereof.92 Neither in a synthetic liquid crystalline
lipid/water system nor in a biological cubic membrane81 has a single srs phase yet been
observed.
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A Numerical methods

Constant mean curvature surfaces by surface evolver

Triangulated approximations of constant mean curvature (CMC) surfaces that are
used here as models for the head-group surfaces bounding the aqueous network-
like domains are obtained by Surface Evolver;83 this program performs iterative min-
imisation of surface forms with respect to different surface functionals, by gradient
methods applied to triangulated surface representations.
The CMC network domains used for the srs based geometries (i.e., for

4srs(24 208), 4srs(5 133) and the bicontinuous gyroid 2srs(214)) are obtained by
the method described in ref. 19. The initial triangulation is a periodic body consist-
ing of 96 triangular facets that is topologically equivalent to a CMC body around a
single srs net within the primitive unit cell (with lattice vectors (1,0,0), (0,1,0) and
(1/2,1/2,1/2), implemented using Surface Evolver’s TORUS model; each of the
four network vertices is represented by a body of 24 triangular facets with four
‘‘open’’ rectangular facets along which it connects to the adjacent vertices; the
vertices and edges of this initial configuration fulfil all symmetries of the space
group I4l32 of the single srs network. Through a sequence of steps of the conjugate
gradient and Hessian methods interspersed with mesh refinement, the shape of the
body is evolved to minimise the discrete version of the functional E[S]: ¼ Ð

S(H(x) �
h0)

2dA with h0 the desired mean curvature value, the point-wise mean curvature
H(x) is discretized using the Surface Evolver method star_normal_sq_mean_curva-
ture using linear elements. Remeshing steps consist in refinement of the triangula-
tion (r in Surface Evolver; division of each edge into two edges and each triangle
into four smaller ones), equiangulation (u; topological transition between two adja-
cent triangles to reach more even triangle angles), vertex averaging (V; replacement
of vertex coordinates with average coordinates of the first shell neighbourhood)
and removal of short edges (t; with a cut-off chosen relative to average edge length).
Symmetries are not explicitly constrained during the evolution towards constant
mean curvature. However, the symmetries of the initial triangulation are found
to be maintained, giving CMC surfaces with the desired I4132 symmetry. The
4srs(24 208), 4srs(5 133) and QG

II data in Fig. 9 to 12 are calculated from triangula-
tions with approximately 24 500 triangles per primitive unit cell per the single srs
CMC body.
The CMC surfaces bounding the aqueous domains of the 3etc(187 193) structures

are obtained by the setup demonstrated in Fig. 17. A surface patch bound by mirror
planes is minimised with respect to the same functional E[S] as above, with an addi-
tional symmetry constraint (symmetry_group ‘‘rotate’’) to ensure the perpendicular
two-fold rotation symmetry (blue line in Fig. 17). The sequence of steps used for this
minimisation is similar to those described for the srs CMC surfaces (in addition, we
have observed improved convergence if a few initial conjugate gradient steps are
applied to the coarse patch with the surface area functional A[S]: ¼ Ð

SdA rather
than E[S] as the functional to minimise). Note the discontinuous dependence of
the resulting surface shape as a function of the mean curvature value h0 discussed
in Fig. 17; whether this discontinuity corresponds to a bifurcation with two solutions
to the problem (such as is observed for the CMC Gyroid surfaces in ref. 19 for high
enough values of h0) is to be addressed by future studies. The structural data for
3etc(187 193) phases in Fig.9 to 14 is based on triangulations with 1500 to 6500
points for the patch shown in Fig. 17.
Data for the 3dia(24 220) structures in this article is preliminary, in that a

proper convergence analysis of the structure has not been performed and in that
we only investigated one value of fBL. The surface triangulation is obtained by
the method described in ref. 29, by minimising the area A[S] subject to a volume
constraint. An equivalent approach to that used for srs and etc structures is
equally possible.
238 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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Fig. 17 CMC surface patches for a single etc network domain as function of the mean curva-
ture h0, for fixed c/a ¼ 0.79 and a ¼ 1 in space group P63/mcm, as used for the evaluation in
Surface Evolver. To suit the Surface Evolver setup, this six-sided patch that is bounded by
mirror-planes is used; it has an internal two-fold symmetry (blue line) perpendicular to the
surface (enforced in the Surface Evolver calculation using the keyword symmetry-group rotate)
and it is therefore not the asymmetric patch. The bounding box is the equilateral prism with
height c/2 and triangular edge length a/3 (c and a refer to the values of the uncoloured space
group P63/mcm of the 3etc(187 193) structure). The 3etc(187 193) structure is obtained by
application of �120� rotations around the vertical line through the centre points of the prism.
When varying the parameter h0 for fixed c/a we find that a critical value of hc exists (hc ¼ 3.15�
0.15 for c/a ¼ 0.79 and a ¼ 1) where the shape of the CMC surface changes discontinuously as
function of h0; this occurs between (c) and (d). Note the bulkier regions near the prism vertices
for h0 < hc (see a–c), that abruptly become much narrower when h0 > hc (see d–f). For h0 < hc,
the CMC surfaces do not lead to non-overlapping 3etc(187 193) configurations and are hence
irrelevant for lipid self-assembly. For h0 > hc, the corresponding 3etc(187 193) configurations
are non-overlapping and hence valid lipid bilayer configurations. At hc, the CMC domains
are not in contact, i.e. dmin(h) ¼ minp ˛ S d(p) is greater than 0 at hc. We observe a qualitatively
similar trend also for c/a ¼ 0.95 and c/a z 1.1. See Table 2 for approximate values of h0.
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Bilayer mid-surfaces by medial surface construction

Medial surfaces are computed by a Voronoi-based algorithm, first described by
Amenta et al.84,85 and adapted specifically to minimal surface geometries in ref.
13 and 14. This algorithm takes a triangulation of the surface S by n vertices xi
connected by triangles as input (i ¼ 1,.,n), computes the Voronoi cells of all
vertices xi of the triangulation, and approximates the medial surface point
ms(xi) as the so-called pole;85 the pole is that vertex yp of the set of vertices {yi}
of the Voronoi cell of xi that maximises the distance (yi � xi)$N(xi) to xi where
N(xi) is the surface normal at vertex xi and $ the scalar product. Medial surface
algorithms of this type are plagued by noise-sensitivity in places where d(p) z
1/k(p), where 1/k(p) is the reciprocal of one of the principal curvatures and where
simultaneously k(p) > 0 (i.e. curvature towards the normal). For the cases studied
in this article—inverse polycontinuous phases—the bilayer ‘‘width’’ 2d(p) is typi-
cally much smaller than the interface’s curvatures, hence largely alleviating these
noise sensitivity issues.

Simulated SAXS scattering patterns

Simulated small angle scattering (SAXS) patterns of the predicted polycontinuous
phases are determined with the voxel-based Fourier method described in ref. 37
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 239
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and 63, based on the principles described in ref. 86 and 87. The following description
is adapted from ref. 63. Our analysis is based on a voxelized representation of the
branched bilayer. A two-phase scattering model is used where constant scattering
length density values rBL and rAQ are assigned to the branched bilayer and its
complement (the aqueous labyrinth-like compartments), respectively. For the case
of the hexagonal mesophases based on the 3etc(187 193) structure, the bilayer is

discretized on a rectangular grid of size
ffiffiffi
3

p
a� a� c. This grid represents a transla-

tional (but not primitive) unit cell of the hexagonal space group (lattice vectors are
[100], [�110] and [001]). The X-ray scattering density of the points inside the bilayer
is rBL; for the remaining grid points representing the aqueous domains r ¼ rAQ. We
can, without loss of generality, assume that the mean scattering density is 0, as devi-
ations from this will only contribute to the scattering curve at q ¼ 0 (forward scat-
tering). For a two-phase system, linearity of the Fourier transform therefore implies
that both the absolute values rAQ and rBL and also their ratio rAQ/rBL only affect the
intensities of the scattering function by a constant factor, and do not alter the peak
locations or relative intensities. The numerical value is therefore irrelevant for our
analysis. From the voxelized representations of the mesophase SAXS scattering
curves are determined by fast Fourier transform (FFT) using an approach which
is based on that presented in Schmidt–Rohr (see ref. 87). Using the FFT to compute
the Fourier transform, we inherently assume that the computational grid is a rectan-
gular lattice. This leads to some complications with respect to our discretization: by
discretizing a structure with hexagonal symmetries, we invariably introduce discre-
tization errors. These errors do not obey the symmetries of the original structure,
but are rather forced onto the rectangular grid used for the computations. As a result
they lead to additional peaks corresponding to symmetries of the computational
grid.
To break the symmetries of the discretization, we introduce random permuta-

tions of rBL and rAQ for the voxels that lie at the interface between the aqueous
channels and the bilayer. On the one hand, this ensures that an error which is
present in one cell does not persist periodically across the computational
domain, and therefore does not contribute additional peaks in the resolved
spectra. On the other hand, this emulates random imperfections/roughness at
the interface between the aqueous channels and the bilayer. As a consequence,
simulations using model structures with a higher spatial resolution (high
number of voxels) will represent scattering from a structure which has less
imperfections, and therefore is relatively smoother than those of a lower spatial
resolution.
B Expressions for Ds and Dd for HII and H194
II

All geometric properties of the inverse hexagonal columnar and the hexagonal close-
packed inverse micellar phase H194

II can be expressed analytically. We provide expres-
sions of the scaled mean curvature H/(A/V), the medial surface distance d and the
shape parameter s, respectively. The angle dependence, the mean value and the
weighted standard deviation of d and s are calculated and compared with the numer-
ically found values in Fig. 10, 12 and 11.
Hexagonal cylinder packings HII

The asymmetric unit of the hexagonal cylinder phase with lattice constant a
and sphere radius r is a triangular prism of length with height L along the
cylinder axes, see Fig. 18. The base triangle is rectangular with catheti of length
a/2 and a=

ffiffiffi
6

p
, corresponding to the angle p/6 at the centre of the sphere. The

volume fraction of the aqueous network domain (i.e., inside of the cylinders) is
given by:
240 | Faraday Discuss., 2013, 161, 215–247 This journal is ª The Royal Society of Chemistry 2013
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Fig. 18 Illustration of the hexagonal cylinder phase. Two cylinders (representing the aqueous
compartments of the inverse hexagonal columnar phase) and their medial surfaces (inside the
branched bilayer) are shown in a cross section perpendicular to the cylinder axes.
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fAQ ¼ Vcyl=Vasy ¼
p

12
r2

a2

8
tan

�p
6

� ¼ 2pffiffiffi
3

p r2

a2
(8)

with fBL ¼ 1 � fAQ. The mean curvature of the cylinder is given by H ¼ (2r)�1. The
surface area of the cylinder surface inside the asymmetric unit patch is given by A ¼
prL/6 and the volume of the part of the asymmetric unit occupied by the matrix
domain by V ¼ Vasy � Vcyl. Hence, the scaled mean curvature can be expressed in
terms of the volume fraction fAQ:

HV

A
¼ 1� fAQ

4fAQ

(9)

The medial surface distance is expressed in terms of the polar angle a (cf. Fig. 18):

dðaÞ ¼ a

2cosa
� r (10)

Averages of a function f(a) in the asymmetric unit are given by:

h f ðaÞi ¼ 6

p

ðp=6
0

da f ðaÞ (11)

The average medial surface distance and its weighted standard deviation are hence
given by:

hdi ¼ a

2

�
1

cosa

�
� r ¼ a

2

�
3ln3

p
� 3ð1=4Þ2ð1=2Þp�ð1=2Þ ffiffiffiffiffiffiffiffi

fAQ

p �
(12)

Dd ¼ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos�2ai � hcos�1ai2

q
(13)

Dd

hdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos�2ðaÞ � cos�1ðaÞi2

q
3ln3

p
� 3ð1=4Þ2ð1=2Þp�ð1=2Þ ffiffiffiffiffiffiffiffi

fAQ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
p� ð3ln3Þ2

q
3ln3� ð2pÞð1=2Þ3ð1=4Þ ffiffiffiffiffiffiffiffi

fAQ

p (14)
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The shape parameter is defined as the quotient of the infinitesimal matrix domain
volume dV(a) and the product of the infinitesimal surface area dA(a) and the medial
surface distance d. We obtain

dA(a) ¼ Lrda (15)

dVðaÞ ¼ dVasy � dVcyl ¼ L
da

2

h� a

2cosa

�2

�r2
i

(16)

0sðaÞ ¼ dV

dA d
¼ 1

2r

� a

2cosa
þ r

�
¼ 1

2

"
1þ

ffiffiffiffiffiffiffiffiffi
p

2
ffiffiffi
3

p
r

$
1ffiffiffiffiffiffiffiffi
fAQ

p $
1

cosa

#
(17)

with the average and the standard deviation:

hsi ¼ 1

2

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2
ffiffiffi
3

p
fAQ

s �
1

cosa

�35 ¼ 1

2

"
1þ 3ln3ffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
ffiffiffi
3

pp $
1ffiffiffiffiffiffiffiffi
fAQ

p
#

(18)

Ds ¼ a

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos�2ai � hcos�1ai2

q
¼ HDd (19)

Ds

hsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos�2ðaÞi � hcos�1ðaÞi2

q
2ð1=2Þ3ð1=4Þp�ð1=2Þ ffiffiffiffiffiffiffiffi

fAQ

p þ hcos�1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� 3

ffiffiffi
3

p
ln2ð3Þ

q
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
fAQ

p þ 3ð3=4Þln3
(20)

Hexagonally close-packed micellar phase H194
II

The calculation for the hexagonally close-packed micellar phase H194
II is identical to

that for a cubic FCC close-pack structure (which, however, has not been realised as
an inverse lipid phase), since these structures share identical nearest-neighbour
micelle geometries. We here present the calculation for the FCC structure.
The FCC sphere packing with cubic lattice parameter a and sphere radius r is illus-

trated in Fig. 19. The asymmetric unit cell is a pyramid with a right-angled triangle
as base, with its vertices at a/4$(2,0,0), a/4$(1,1,0), a/4$(1,1,1), and the apex in the
sphere centre (origin). The volume fraction of the network domain (i.e., the inside
of the spheres) is given by

fAQ ¼ Vsph=Vasy ¼
p

3$12
r3

1

16$12
a3

¼ 16p

3
$
�r
a

�3

(21)

The mean curvature is 1/r and the part of the surface area of the sphere that is
within the asymmetric unit patch is A ¼ pr2/12, yielding the scaled mean curvature
for the matrix domain:

H

A=V
¼ 1� fAQ

3fAQ

(22)
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Fig. 19 FCC sphere packing illustration. Left: Sectional drawing of (100)-plane through the
sphere origin. The cross section of the medial surface around sphere A is shown by a dashed
line. Right: One of the faces of the medial surface (a rhombic dodecahedron). The obtuse angle
r is the tetrahedral angle (i.e., tz 109.5�). The dashed quarter of the rhombus forms the base of
the asymmetric unit, a pyramid with its apex in the center of the dodecahedron.
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with the volume of the asymmetric unit that is occupied by the matrix domain V ¼
Vasy � Vcyl. In the Cartesian system where h110i becomes zenith, the corner coordi-
nates (for simplicity normalised by 4/a) of the triangle transform like

ð1; 1;�1Þ ! 	
0; 1;

ffiffiffi
2

p 

ð1; 1; 0Þ ! 	

0; 0;
ffiffiffi
2

p 

ð2; 0; 0Þ ! 	 ffiffiffi

2
p

; 0;
ffiffiffi
2

p 
 (23)

The triangle can be parametrised in terms of the solid angle U ¼ (w,4) in the new
coordinate system with the angles w and 4 defined by~r¼ r(sinwcos4,sinwsin4,cosw) :

0 # 4 #
p

2

0 # w # arctan

�
1

cos4þ ffiffiffi
2

p
sin4

�
:¼ wmaxð4Þ

(24)

The average value of a function f(U) is obtained via:

h f ðUÞi ¼ 12

p

ðp
2

0

d4

ðwmaxð4Þ

0

dw sinw f ðUÞ ¼ 12

p

ðp
2

0

d4

ð1
cosðwmaxð4ÞÞ

du f ðu;4Þ (25)

with the substitution cos(w) ¼ u in the last identity.
The distance of a point on the medial surface to the origin of the corresponding

sphere is determined by taking use of the fact that the z-coordinate is constant within
the asymmetric surface patch:

rðUÞ ¼ affiffiffi
8

p 1

cosw
(26)

Medial surface distance, local surface area and local matrix domain volume can be
expressed in terms of r(U):

d(U) ¼ r(U) � r (27)

dA(U) ¼ r2$dU ¼ const. (28)
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 215–247 | 243
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dVðUÞ ¼ dU

3

	
r3ðUÞ � r3



(29)

Substituting f ðfAQÞ :¼
ffiffiffi
8

p �
3

16p

�ð1=3Þ
f
ð1=3Þ
AQ and using a partial fraction expan-

sion, the shape parameter is decomposed into exponents of u ¼ cos(w):

sðuÞ ¼ r3ðuÞ � r3

3r2ðrðuÞ � rÞ ¼
1

3f 2
u�3 � f 3

u�1 � f
¼ 1

3

n
1þ ðfuÞ�1þðfuÞ�2

o
(30)

Using the abbreviation cn: ¼ hu�ni, we derive the average and standard deviation
of the medial surface distance d

hdi ¼ affiffiffi
8

p 	
c1 � f

	
fAQ




(31)

Dd ¼ affiffiffi
8

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c21

q
(32)

Dd

hdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c21

p
c1 � f

	
fAQ


 (33)

as well as the average and the standard deviation of the shape parameter s

hsi ¼ 1

3

�
1þ c1

f
þ c2

f 2

�
(34)

Ds ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c21
f 2

þ 2
c3 � c1c2

f 3
þ c4 � c22

f 4

s
(35)

Ds

hsi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c21
f 2

þ 2
c3 � c1c2

f 3
þ c4 � c22

f 4

s

1þ c1

f
þ c2

f 2

(36)

with f:¼ f(fAQ). To obtain the numerical values of cn, the integral defined in eqn (25)
has to be solved. While the inner integral over u is straight forward, the outer integral
over 4 is calculated numerically with Simpson’s rule and 106 nodes in the interval
(0,p/2). The first eight digits of the numerical values of the constants are

f(fAQ) ¼ 1.1053389 � (fAQ)
1/3, (37)

c1 ¼ 1.1004937, (38)

c2 ¼ 1.2163364, (39)
c3 ¼ 1.3503394, (40)

c4 ¼ 1.5060711. (41)
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