124 research outputs found

    Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Observed Feeding on Chamaesaracha sp. in Eastern Colorado.

    Get PDF
    Egg, larval, and adult life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say), were observed feeding on or attached to a previously undocumented host plant belonging to the genus Chamaesaracha in eastern Colorado on July 2017. At one site, L. decemlineata were more abundant on Chamaesaracha sp. than the accepted ancestral host plant, Solanum rostratum (Dunal). While future studies should confirm the ancestral status of the observed L. decemlineata and suitability of Chamaesaracha sp. for completion of development, our observations suggest a need for further characterization of the ancestral host range of L. decemlineata

    Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae) in alpine habitats of California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: <it>Grylloblatta</it>). The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California <it>Grylloblatta</it>.</p> <p>Results</p> <p>Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of <it>Grylloblatta </it>in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine <it>Grylloblatta </it>populations. Based on calibrated relaxed clock estimates, evolutionary diversification of <it>Grylloblatta </it>occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch.</p> <p>Conclusions</p> <p><it>Grylloblatta </it>species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations, suggesting alpine populations may track expanding glacial ice sheets and diversify as a result of multiple glacial advances. Based on relaxed-clock molecular dating, the temporal diversification of <it>Grylloblatta </it>provides evidence for the role of a climate-driven species pump in alpine species during the Pleistocene epoch.</p

    Grylloblattodea of Canada

    Get PDF
    The enigmatic insect order Grylloblattodea comprises two described species in Canada, which are limited to the Montane Cordillera and Pacific Maritime ecozones. One of the described species has three Canadian subspecies of uncertain taxonomic ranking, and there are two additional undescribed or unreported species known in close proximity to the Canadian border in western Alberta and British Columbia that likely also occur in Canada. Thus, as much as 50% of the total taxonomic diversity of Grylloblattodea in Canada is still undocumented. Targeted surveys and taxonomic work, as well as studies that describe the ecology and conservation status of Grylloblattodea are important goals for future research

    Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Observed Feeding on Chamaesaracha sp. in Eastern Colorado.

    Get PDF
    Egg, larval, and adult life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say), were observed feeding on or attached to a previously undocumented host plant belonging to the genus Chamaesaracha in eastern Colorado on July 2017. At one site, L. decemlineata were more abundant on Chamaesaracha sp. than the accepted ancestral host plant, Solanum rostratum (Dunal). While future studies should confirm the ancestral status of the observed L. decemlineata and suitability of Chamaesaracha sp. for completion of development, our observations suggest a need for further characterization of the ancestral host range of L. decemlineata

    RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata

    Get PDF
    AbstractThe Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations

    Testing for Associations between Loci and Environmental Gradients Using Latent Factor Mixed Models

    Get PDF
    Adaptation to local environments often occurs through natural selection acting on a large number of loci, each having a weak phenotypic effect. One way to detect these loci is to identify genetic polymorphisms that exhibit high correlation with environmental variables used as proxies for ecological pressures. Here, we propose new algorithms based on population genetics, ecological modeling, and statistical learning techniques to screen genomes for signatures of local adaptation. Implemented in the computer program "latent factor mixed model" (LFMM), these algorithms employ an approach in which population structure is introduced using unobserved variables. These fast and computationally efficient algorithms detect correlations between environmental and genetic variation while simultaneously inferring background levels of population structure. Comparing these new algorithms with related methods provides evidence that LFMM can efficiently estimate random effects due to population history and isolation-by-distance patterns when computing gene-environment correlations, and decrease the number of false-positive associations in genome scans. We then apply these models to plant and human genetic data, identifying several genes with functions related to development that exhibit strong correlations with climatic gradients.Comment: 29 pages with 8 pages of Supplementary Material (V2 revised presentation and results part

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    Get PDF
    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations

    Is Chytridiomycosis an Emerging Infectious Disease in Asia?

    Get PDF
    The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused dramatic amphibian population declines and extinctions in Australia, Central and North America, and Europe. Bd is associated with >200 species extinctions of amphibians, but not all species that become infected are susceptible to the disease. Specifically, Bd has rapidly emerged in some areas of the world, such as in Australia, USA, and throughout Central and South America, causing population and species collapse. The mechanism behind the rapid global emergence of the disease is poorly understood, in part due to an incomplete picture of the global distribution of Bd. At present, there is a considerable amount of geographic bias in survey effort for Bd, with Asia being the most neglected continent. To date, Bd surveys have been published for few Asian countries, and infected amphibians have been reported only from Indonesia, South Korea, China and Japan. Thus far, there have been no substantiated reports of enigmatic or suspected disease-caused population declines of the kind that has been attributed to Bd in other areas. In order to gain a more detailed picture of the distribution of Bd in Asia, we undertook a widespread, opportunistic survey of over 3,000 amphibians for Bd throughout Asia and adjoining Papua New Guinea. Survey sites spanned 15 countries, approximately 36° latitude, 111° longitude, and over 2000 m in elevation. Bd prevalence was very low throughout our survey area (2.35% overall) and infected animals were not clumped as would be expected in epizootic events. This suggests that Bd is either newly emerging in Asia, endemic at low prevalence, or that some other ecological factor is preventing Bd from fully invading Asian amphibians. The current observed pattern in Asia differs from that in many other parts of the world
    corecore