22 research outputs found

    Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment

    Get PDF
    Rapid development and drastic population increase in Qatar have led to increasing awareness about food security. Microalgae are considered one of the most promising feedstocks owing to their ability to produce nutrients, including lipids, carbohydrates, and proteins, in addition to antioxidants, vitamins, and minerals. In this study, 30 isolates of local freshwater microalgae were screened first based on their growth rate to select the most suitable strains for feed production. Based on the normality test, 15 fast-growing microalgae isolates were selected and subjected to further investigation of their metabolites content. The hierarchical Cluster Analysis conducted on lipids, proteins and carbohydrates contents subdivided these strains selected into 4 clusters, among them, the cluster one was grouping three Chlorella and two Mychonastes isolates with high nutritional values due to their high amounts of lipid and protein. The survey of metabolite production was performed every three days during growth in a volume of 3 L. We observed that the maximum amount of proteins and lipids was produced at day 6 and 14, respectively. The assessment of the Trolox equivalent antioxidant capacity of the top 5 strains proved that Mychonastes homosphaera isolate QUCCCM70 showed the highest antioxidant capacity. Moreover, results revealed the presence of essential amino acids and omega3 fatty acids. The screening evidenced a Mychonastes homosphaera strain QUCCCM70 with high nutritional value that can be considered as a promising alternative to produce a well-balanced animal feed supplement for a high quality of poultry and livestock products.This publication was made possible by the NPRP grant # [NPRP8-1087-1-207] from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work, and are solely the responsability of the authors. Special thanks go to Anna Aguilar and Pedram Shahbazi and Maaroof Eroth for the technical support

    Cultivating epizoic diatoms provides insights into the evolution and ecology of both epibionts and hosts

    Get PDF
    11 pages, 3 figures, 1 table, supplementary information https://doi.org/10.1038/s41598-022-19064-0.-- Data availability: DNA sequence data generated for this study are published on the NCBI GenBank online sequence depository under the accession numbers listed in Table S1. Additional micrographs and cleaned voucher material from the sequenced cultures are available from lead author MPAOur understanding of the importance of microbiomes on large aquatic animals—such as whales, sea turtles and manatees—has advanced considerably in recent years. The latest observations indicate that epibiotic diatom communities constitute diverse, polyphyletic, and compositionally stable assemblages that include both putatively obligate epizoic and generalist species. Here, we outline a successful approach to culture putatively obligate epizoic diatoms without their hosts. That some taxa can be cultured independently from their epizoic habitat raises several questions about the nature of the interaction between these animals and their epibionts. This insight allows us to propose further applications and research avenues in this growing area of study. Analyzing the DNA sequences of these cultured strains, we found that several unique diatom taxa have evolved independently to occupy epibiotic habitats. We created a library of reference sequence data for use in metabarcoding surveys of sea turtle and manatee microbiomes that will further facilitate the use of environmental DNA for studying host specificity in epizoic diatoms and the utility of diatoms as indicators of host ecology and health. We encourage the interdisciplinary community working with marine megafauna to consider including diatom sampling and diatom analysis into their routine practicesFinancial support for sequencing and SEM comes from the Jane and the Roland Blumberg Centennial Professorship in Molecular Evolution at UT Austin and the US Department of Defense (grant number W911NF-17-2-0091). Sampling in South Africa was done with partial financial support from The Systematics Association (UK) through the Systematics Research Fund Award granted to RM (2017 and 2020). Work in the Adriatic Sea was supported by Croatian Science Foundation, project UIP-05-2017-5635 (TurtleBIOME). KF has been fully supported by the “Young researchers' career development project – training of doctoral students” of the CSF funded by the EU from the European Social Fund. NJR was funded by the Spanish government (AEI) through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Prymnesins: Toxic Metabolites of the Golden Alga, Prymnesium parvum Carter (Haptophyta)

    Get PDF
    Increasingly over the past century, seasonal fish kills associated with toxic blooms of Prymnesium parvum have devastated aquaculture and native fish, shellfish, and mollusk populations worldwide. Protracted blooms of P. parvum can result in major disturbances to the local ecology and extensive monetary losses. Toxicity of this alga is attributed to a collection of compounds known as prymnesins, which exhibit potent cytotoxic, hemolytic, neurotoxic and ichthyotoxic effects. These secondary metabolites are especially damaging to gill-breathing organisms and they are believed to interact directly with plasma membranes, compromising integrity by permitting ion leakage. Several factors appear to function in the activation and potency of prymnesins including salinity, pH, ion availability, and growth phase. Prymnesins may function as defense compounds to prevent herbivory and some investigations suggest that they have allelopathic roles. Since the last extensive review was published, two prymnesins have been chemically characterized and ongoing investigations are aimed at the purification and analysis of numerous other toxic metabolites from this alga. More information is needed to unravel the mechanisms of prymnesin synthesis and the significance of these metabolites. Such work should greatly improve our limited understanding of the physiology and biochemistry of P. parvum and how to mitigate its blooms

    Prymnesins: Toxic Metabolites of the Golden Alga, Prymnesium parvum Carter (Haptophyta)

    No full text
    Abstract: Increasingly over the past century, seasonal fish kills associated with toxic blooms of Prymnesium parvum have devastated aquaculture and native fish, shellfish, and mollusk populations worldwide. Protracted blooms of P. parvum can result in major disturbances to the local ecology and extensive monetary losses. Toxicity of this alga is attributed to a collection of compounds known as prymnesins, which exhibit potent cytotoxic, hemolytic, neurotoxic and ichthyotoxic effects. These secondary metabolites are especially damaging to gill-breathing organisms and they are believed to interact directly with plasma membranes, compromising integrity by permitting ion leakage. Several factors appear to function in the activation and potency of prymnesins including salinity, pH, ion availability, and growth phase. Prymnesins may function as defense compounds to prevent herbivory and some investigations suggest that they have allelopathic roles. Since the last extensive review was published, two prymnesins have been chemically characterized and ongoing investigations are aimed at the purification and analysis of numerous other toxic metabolites from this alga. More information is needed to unravel the mechanisms of prymnesin synthesis and the significance of these metabolites. Such work should greatly improve our limited understanding of the physiology and biochemistry of P. parvum and how to mitigate its blooms

    Microalgae for high-value products towards human health and nutrition

    No full text
    Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products

    First Confirmed Case of Canine Mortality Due to Dihydroanatoxin-a in Central Texas, USA

    No full text
    The frequency of dogs becoming ill or dying from accidental exposure to cyanotoxins, produced by cyanobacteria, is increasing throughout the United States. In January and February of 2021, two dogs died and five dogs became ill after swimming in Lake Travis, central Texas, USA; one deceased dog (C1) was subjected to pathological testing. Algal materials, sediment samples, zebra mussel viscera, periphyton from shells, as well as fluids and tissues from the digestive tract of C1 were investigated for the following cyanotoxins: anatoxin-a, homoanatoxin-a, dihydroanatoxin-a (dhATX), cylindrospermopsin, saxitoxin, and microcystins. Necropsy results of C1 indicated neurotoxicosis with significant levels of dhATX in the duodenum tissues (10.51 ng/g dry weight (DW)), jejunum tissue (6.076 ng/g DW), and stomach contents (974.88 ng/g DW). Algae collected near the site of C1’s death contained levels of dhATX, ranging from 13 to 33 µg/g. By comparison, dhATX was detected at much lower concentrations in sediment samples (310.23 ng/g DW) and the periphyton on zebra mussel shells (38.45 ng/g DW). While dhATX was suspected in the deaths of canines from an event in Texas in 2019, this is the first report linking dhATX neurotoxicosis through pathological findings in Texas and potentially in the United States

    Environmental Factors Impacting the Development of Toxic Cyanobacterial Proliferations in a Central Texas Reservoir

    No full text
    Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6–133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats

    Microalgal-based feed: promising alternative feedstocks for livestock and poultry production

    Get PDF
    There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.This report was made possible the NPRP award [NPRP8–1087–1-207] from the Qatar National Research Fund, a member of The Qatar Foundation. The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library

    Microalgal-based feed: promising alternative feedstocks for livestock and poultry production

    Get PDF
    Abstract There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production
    corecore