15 research outputs found

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades

    Get PDF
    For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as the Oxyuranus venoms analysed include samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom production (the snake that killed the collector Kevin Budden), as well as samples from the first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976. These results demonstrate that with proper storage techniques, venom samples can retain structural and pharmacological stability. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Biological significance: •These results show that with proper storage venoms are useful for decades.•These results have direct implications for the use of rare venoms

    Involution of Collagen-Induced Arthritis with an Angiogenesis Inhibitor, PPI-2458

    No full text
    Pannus formation, in both rheumatoid arthritis (RA) and collagen-induced arthritis (CIA), is angiogenesis-dependent. PPI-2458 [(1R)-1-carbamoyl-2-methyl]-carbamic acid-(3R,3S,5S, 6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)oxiranyl]-1-oxaspiro(2*5)oct-6-yl ester], a new fumagillin derivative known to inhibit methionine aminopeptidase 2 (MetAP-2) and endothelial proliferation at the late G1 phase, was evaluated in CIA rats to study its potential to involute synovitis. Arthritic syngeneic LOU rats received either a vehicle control or various dosages of oral, intravenous, or subcutaneous PPI-2458. Plasma samples were analyzed to determine a pharmacokinetic profile of PPI-2458, and whole blood was evaluated by flow cytometry to assess the effect on lymphocyte subsets. At 15 mg/kg i.v., 30 mg/kg s.c., or 100 mg/kg p.o., there was a significant reduction in clinical severity scores (p < 0.001) and blinded radiographic scores (p < 0.001) compared with vehicle control groups. Structural damage was virtually eliminated with PPI-2458. Continuous inhibition of MetAP-2 was needed to maintain benefits, although pannus involution could be achieved with the inhibitor when escape flares occurred. Pharmacokinetic analysis after a single p.o. dose showed a rapid Tmax value of 15 min followed by biphasic elimination (t½, ∼20 min and t½, ∼5 h) and an estimated oral bioavailability of ∼15%. Flow cytometry revealed a dose-dependent decrease in white blood cells and lymphocytes manifested as decreases in circulating CD3+ T cells and natural killer cells. PPI-2458, however, did not seem to be immunosuppressive, as determined by delayed-type hypersensitivity or IgG antibody assays. These studies indicate that the MetAP-2 inhibitor PPI-2458 can regress established CIA and that angiogenic mechanisms might be important targets in the treatment of other pannus-mediated diseases such as RA

    Revealing polygenic pleiotropy using genetic risk scores for asthma

    No full text
    Summary: In this study we examined how genetic risk for asthma associates with different features of the disease and with other medical conditions and traits. Using summary statistics from two multi-ancestry genome-wide association studies of asthma, we modeled polygenic risk scores (PRSs) and validated their predictive performance in the UK Biobank. We then performed phenome-wide association studies of the asthma PRSs with 371 heritable traits in the UK Biobank. We identified 228 total significant associations across a variety of organ systems, including associations that varied by PRS model, sex, age of asthma onset, ancestry, and human leukocyte antigen region alleles. Our results highlight pervasive pleiotropy between asthma and numerous other traits and conditions and elucidate pathways that contribute to asthma and its comorbidities

    Fine-mapping studies distinguish genetic risks for childhood- and adult-onset asthma in the HLA region

    No full text
    Background: Genome-wide association studies of asthma have revealed robust associations with variation across the human leukocyte antigen (HLA) complex with independent associations in the HLA class I and class II regions for both childhood-onset asthma (COA) and adult-onset asthma (AOA). However, the specific variants and genes contributing to risk are unknown. Methods: We used Bayesian approaches to perform genetic fine-mapping for COA and AOA (n=9432 and 21,556, respectively; n=318,167 shared controls) in White British individuals from the UK Biobank and to perform expression quantitative trait locus (eQTL) fine-mapping in immune (lymphoblastoid cell lines, n=398; peripheral blood mononuclear cells, n=132) and airway (nasal epithelial cells, n=188) cells from ethnically diverse individuals. We also examined putatively causal protein coding variation from protein crystal structures and conducted replication studies in independent multi-ethnic cohorts from the UK Biobank (COA n=1686; AOA n=3666; controls n=56,063). Results: Genetic fine-mapping revealed both shared and distinct causal variation between COA and AOA in the class I region but only distinct causal variation in the class II region. Both gene expression levels and amino acid variation contributed to risk. Our results from eQTL fine-mapping and amino acid visualization suggested that the HLA-DQA1*03:01 allele and variation associated with expression of the nonclassical HLA-DQA2 and HLA-DQB2 genes accounted entirely for the most significant association with AOA in GWAS. Our studies also suggested a potentially prominent role for HLA-C protein coding variation in the class I region in COA. We replicated putatively causal variant associations in a multi-ethnic cohort. Conclusions: We highlight roles for both gene expression and protein coding variation in asthma risk and identified putatively causal variation and genes in the HLA region. A convergence of genomic, transcriptional, and protein coding evidence implicates the HLA-DQA2 and HLA-DQB2 genes and HLA-DQA1*03:01 allele in AOA.</p
    corecore