907 research outputs found
Extensions of tempered representations
Let be irreducible tempered representations of an affine Hecke
algebra H with positive parameters. We compute the higher extension groups
explicitly in terms of the representations of analytic
R-groups corresponding to and . The result has immediate
applications to the computation of the Euler-Poincar\'e pairing ,
the alternating sum of the dimensions of the Ext-groups. The resulting formula
for is equal to Arthur's formula for the elliptic pairing of
tempered characters in the setting of reductive p-adic groups. Our proof
applies equally well to affine Hecke algebras and to reductive groups over
non-archimedean local fields of arbitrary characteristic. This sheds new light
on the formula of Arthur and gives a new proof of Kazhdan's orthogonality
conjecture for the Euler-Poincar\'e pairing of admissible characters.Comment: This paper grew out of "A formula of Arthur and affine Hecke
algebras" (arXiv:1011.0679). In the second version some minor points were
improve
Socio-economic baseline assessment: Thayawthatangyi and Langan Islands, Myeik Archipelago, Myanmar
This report details the methodology and results of a 2014 socio-economic baseline assessment of 4 villages in the Myeik Archipelago, Myanmar undertaken as part of a programme to build local stakeholders capacity to use data to inform marine resource planning and managemn
Timelike and null focusing singularities in spherical symmetry: a solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis
Extending the study of spherically symmetric metrics satisfying the dominant
energy condition and exhibiting singularities of power-law type initiated in
SI93, we identify two classes of peculiar interest: focusing timelike
singularity solutions with the stress-energy tensor of a radiative perfect
fluid (equation of state: ) and a set of null singularity
classes verifying identical properties. We consider two important applications
of these results: to cosmology, as regards the possibility of solving the
horizon problem with no need to resort to any inflationary scenario, and to the
Strong Cosmic Censorship Hypothesis to which we propose a class of physically
consistent counter-examples.Comment: 26 pages, 2 figures, LaTeX file. Submitted to Phys. Rev.
Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid.
Cells employ active measures to restrict infection by pathogens, even prior to responses from the innate and humoral immune defenses. In this context selective autophagy is activated upon pathogen induced membrane rupture to sequester and deliver membrane fragments and their pathogen contents for lysosomal degradation. Adenoviruses, which breach the endosome upon entry, escape this fate by penetrating into the cytosol prior to autophagosome sequestration of the ruptured endosome. We show that virus induced membrane damage is recognized through Galectin-8 and sequesters the autophagy receptors NDP52 and p62. We further show that a conserved PPxY motif in the viral membrane lytic protein VI is critical for efficient viral evasion of autophagic sequestration after endosomal lysis. Comparing the wildtype with a PPxY-mutant virus we show that depletion of Galectin-8 or suppression of autophagy in ATG5-/- MEFs rescues infectivity of the PPxY-mutant virus while depletion of the autophagy receptors NDP52, p62 has only minor effects. Furthermore we show that wildtype viruses exploit the autophagic machinery for efficient nuclear genome delivery and control autophagosome formation via the cellular ubiquitin ligase Nedd4.2 resulting in reduced antigenic presentation. Our data thus demonstrate that a short PPxY-peptide motif in the adenoviral capsid permits multi-layered viral control of autophagic processes during entry
Cosmic Strings Lens Phenomenology: Model of Poisson Energy Distribution
We present a novel approach for investigating lens phenomenology of cosmic
strings in order to elaborate detection strategies in galaxy deep field images.
To account for the complexity of the projected energy distribution of string
networks we assume their lens effects to be similar to those of a straight
string carrying a {\em random} lineic energy distribution. In such a model we
show that, unlike the case of uniform strings, critical phenomena naturally
appear. We explore the properties of the critical lines and caustics. In
particular, assuming that the energy coherence length along the string is much
smaller than the observation scale, we succeeded in computing the total length
of critical lines per unit string length and found it to be . The length of the associated caustic lines can also be computed to be
. The picture we obtain here for the
phenomenology of cosmic string detection is clearly at variance with common
lore.Comment: 10 pages, 5 figures. Minor correction
Dielectronic Recombination in He+ Ions
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Gravitationally lensed QSOs in the ISSIS/WSO-UV era
Gravitationally lensed QSOs (GLQs) at redshift z = 1-2 play a key role in
understanding the cosmic evolution of the innermost parts of active galaxies
(black holes, accretion disks, coronas and internal jets), as well as the
structure of galaxies at intermediate redshifts. With respect to studies of
normal QSOs, GLQ programmes have several advantages. For example, a monitoring
of GLQs may lead to unambiguous detections of intrinsic and extrinsic
variations. Both kinds of variations can be used to discuss central engines in
distant QSOs, and mass distributions and compositions of lensing galaxies. In
this context, UV data are of particular interest, since they correspond to
emissions from the immediate surroundings of the supermassive black hole. We
describe some observation strategies to analyse optically bright GLQs at z of
about 1.5, using ISSIS (CfS) on board World Space Observatory-Ultraviolet.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space
Scienc
Spatial correlations in vote statistics: a diffusive field model for decision-making
We study the statistics of turnout rates and results of the French elections
since 1992. We find that the distribution of turnout rates across towns is
surprisingly stable over time. The spatial correlation of the turnout rates, or
of the fraction of winning votes, is found to decay logarithmically with the
distance between towns. Based on these empirical observations and on the
analogy with a two-dimensional random diffusion equation, we propose that
individual decisions can be rationalised in terms of an underlying "cultural"
field, that locally biases the decision of the population of a given region, on
top of an idiosyncratic, town-dependent field, with short range correlations.
Using symmetry considerations and a set of plausible assumptions, we suggest
that this cultural field obeys a random diffusion equation.Comment: 18 pages, 5 figures; added sociophysics references
How Asia Confronts COVID-19 through Technology
With societies around the world tackling the Coronavirus pandemic, the role of digital technology has come into focus as a means of augmenting efforts to manage disease and its impacts. What can apps, big data, and digital analytics contribute to such efforts, and what risks do they pose? Asia provides important lessons. Not only have societies in the region long been at the forefront of technological development, but they have also proactively adopted digital solutions as they confront COVID-19. Importantly, Asia has a history of managing highly contagious diseases, and outbreaks like SARS in 2002 or H1N1 in 2009 have provided experiences in risk management and health provision that now powerfully inform both digital and non-digital responses to the current pandemic. The result is a diverse range of different approaches that can teach us much about the advantages and disadvantages of designing tech solutions to fight pandemics.Asian Studie
Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO/SrTiO Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission
LaNiO (LNO) is an intriguing member of the rare-earth nickelates in
exhibiting a metal-insulator transition for a critical film thickness of about
4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such
thin films also show a transition to a metallic state in superlattices with
SrTiO (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to
better understand this transition, we have studied a strained LNO/STO
superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an
(LaAlO)(SrAlTaO) substrate using soft x-ray
standing-wave-excited angle-resolved photoemission (SWARPES), together with
soft- and hard- x-ray photoemission measurements of core levels and
densities-of-states valence spectra. The experimental results are compared with
state-of-the-art density functional theory (DFT) calculations of band
structures and densities of states. Using core-level rocking curves and x-ray
optical modeling to assess the position of the standing wave, SWARPES
measurements are carried out for various incidence angles and used to determine
interface-specific changes in momentum-resolved electronic structure. We
further show that the momentum-resolved behavior of the Ni 3d eg and t2g states
near the Fermi level, as well as those at the bottom of the valence bands, is
very similar to recently published SWARPES results for a related
LaSrMnO/SrTiO superlattice that was studied using the
same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which
further validates this experimental approach and our conclusions. Our
conclusions are also supported in several ways by comparison to DFT
calculations for the parent materials and the superlattice, including
layer-resolved density-of-states results
- …