545 research outputs found

    Construction and Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System

    Full text link
    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of \sim0.2\,Bq\,m3^{-3}. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a >>\,300×\times reduction from an input activity of 58.6±0.758.6\pm0.7\,Bq\,m3^{-3} to a cleanroom activity of 0.13±0.060.13\pm0.06\,Bq\,m3^{-3}.Comment: 5 pages, 4 figures, Proceedings of Low Radioactivity Techniques (LRT) 2015, Seattle, WA, March 18-20, 201

    Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region

    Full text link
    We have detected bright HC7N J = 21-20 emission toward multiple locations in the Serpens South cluster-forming region using the K-Band Focal Plane Array at the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold filamentary structures that have yet to form stars, largely avoiding the dense gas associated with small protostellar groups and the main central cluster of Serpens South. Where detected, the HC7N abundances are similar to those found in other nearby star forming regions. Toward some HC7N `clumps', we find consistent variations in the line centroids relative to NH3 (1,1) emission, as well as systematic increases in the HC7N non-thermal line widths, which we argue reveal infall motions onto dense filaments within Serpens South with minimum mass accretion rates of M ~ 2-5 M_sun Myr^-1. The relative abundance of NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n ~ 10^4 cm^-3, for timescales t < 1-2 x 10^5 yr. Since HC7N emission peaks are rarely co-located with those of either NH3 or continuum, it is likely that Serpens South is not particularly remarkable in its abundance of HC7N, but instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed us to detect HC7N at low abundances in regions where it otherwise may not have been looked for. This result extends the known star-forming regions containing significant HC7N emission from typically quiescent regions, like the Taurus molecular cloud, to more complex, active environments.Comment: 19 pages, 13 figures, accepted to MNRAS. Version with full resolution figures available at http://www.dunlap.utoronto.ca/~friesen/Friesen_HC7N.pd

    Determining the Mass of Dark Matter Particles with Direct Detection Experiments

    Full text link
    In this article I review two data analysis methods for determining the mass (and eventually the spin-independent cross section on nucleons) of Weakly Interacting Massive Particles with positive signals from direct Dark Matter detection experiments: a maximum likelihood analysis with only one experiment and a model-independent method requiring at least two experiments. Uncertainties and caveats of these methods will also be discussed.Comment: 24 pages, 10 figures, 1 reference added, typos fixed, published version, to appear in the NJP Focus Issue on "Dark Matter and Particle Physics

    The COMPLETE Nature of the Warm Dust Ring in Perseus

    Full text link
    The Perseus molecular cloud complex is a ~30pc long chain of molecular clouds most well-known for the two star-forming clusters NGC1333 and IC348 and the well-studied outflow source in B5. However, when studied at mid- to far-infrared wavelengths the region is dominated by a ~10pc diameter shell of warm dust, likely generated by an HII region caused by the early B-star HD278942. Using a revised calibration technique the COMPLETE team has produced high-sensitivity temperature and column-density maps of the Perseus region from IRAS Sky Survey Atlas (ISSA) 60 and 100um data. In this paper, we combine the ISSA based dust-emission maps with other observations collected as part of the COMPLETE Survey, along with archival H-alpha and MSX observations. Molecular line observations from FCRAO and extinction maps constructed by applying the NICER method to the 2MASS catalog provide independent estimates of the ``true'' column-density of the shell. H-alpha emission in the region of the shell confirms that it is most likely an HII region located behind the cloud complex, and 8um data from MSX indicates that the shell may be interacting with the cloud. Finally, the two polarisation components previously seen towards background stars in the region can be explained by the association of the stronger component with the shell. If confirmed, this would be the first observation of a parsec-scale swept-up magnetic field.Comment: Accepted by ApJ. Figures have been compressed - full resolution version available at http://cfa-www.harvard.edu/COMPLETE/results.htm

    Constraining Radon Backgrounds in LZ

    Get PDF
    The LZ dark matter detector, like many other rare-event searches, will suffer from backgrounds due to the radioactive decay of radon daughters. In order to achieve its science goals, the concentration of radon within the xenon should not exceed 2μ2\muBq/kg, or 20 mBq total within its 10 tonnes. The LZ collaboration is in the midst of a program to screen all significant components in contact with the xenon. The four institutions involved in this effort have begun sharing two cross-calibration sources to ensure consistent measurement results across multiple distinct devices. We present here five preliminary screening results, some mitigation strategies that will reduce the amount of radon produced by the most problematic components, and a summary of the current estimate of radon emanation throughout the detector. This best estimate totals <17.3<17.3 mBq, sufficiently low to meet the detector's science goals.Comment: Low Radioactivity Techniques (LRT) 2017 Workshop Proceedings. 6 pages; 3 figure

    Evidence for dust evolution within the Taurus Complex from Spitzer images

    Get PDF
    We present Spitzer images of the Taurus Complex (TC) and take advantage of the sensitivity and spatial resolution of the observations to characterize the diffuse IR emission across the cloud. This work highlights evidence of dust evolution within the translucent sections of the archetype reference for studies of quiescent molecular clouds. We combine Spitzer 160 um and IRAS 100 um observations to produce a dust temperature map and a far-IR dust opacity map at 5' resolution. The average dust temperature is about 14.5K with a dispersion of +/-1K across the cloud. The far-IR dust opacity is a factor 2 larger than the average value for the diffuse ISM. This opacity increase and the attenuation of the radiation field (RF) both contribute to account for the lower emission temperature of the large grains. The structure of the TC significantly changes in the mid-IR images that trace emission from PAHs and VSGs. We focus our analysis of the mid-IR emission to a range of ecliptic latitudes where the zodiacal light residuals are small. Within this cloud area, there are no 8 and 24 um counterparts to the brightest 160 um emission features. Conversely, the 8 and 24 um images reveal filamentary structure that is strikingly inconspicuous in the 160 um and extinction maps. The IR colors vary over sub-parsec distances across this filamentary structure. We compare the observed colors with model calculations quantifying the impact of the RF intensity and the abundance of stochastically heated particles on the dust SED. To match the range of observed colors, we have to invoke variations by a factor of a few of both the interstellar RF and the abundance of PAHs and VSGs. We conclude that within this filamentary structure a significant fraction of the dust mass cycles in and out the small size end of the dust size distribution.Comment: 43 pages, 13 figures, accepted for publication in Ap

    TMC-1C: an accreting starless core

    Get PDF
    We have mapped the starless core TMC-1C in a variety of molecular lines with the IRAM 30m telescope. High density tracers show clear signs of self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a region of about 7,000 AU in radius around the dust continuum peak, which is the most extended ``infalling'' region observed in a starless core with this tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests that their emission comes from a shell outside the colder interior traced by the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to ~10 K away from the center. This is consistent with a volume density drop of the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to ~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU). The column density implied by the gas and dust show similar N2H+ and CO depletion factors (f_D < 6). This can be explained with a simple scenario in which: (i) the TMC-1C core is embedded in a relatively dense environment (H2 ~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had time to reach equilibrium values; (ii) the surrounding material (rich in CO and N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than 3x10^5 yr, to account for the observed abundance of N2H+ across the core (~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4 yr) or ``undepleted'' material from the surrounding envelope has fallen towards it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure

    An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    Full text link
    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ~10^8 cm^-3, with the exact density dependent on the viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to central densities at least as high as 10^10 cm^-3. Our starless core non-detections are used to infer that either the star formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert spheres. We outline future work necessary to distinguish between these two possibilities.Comment: Accepted by Ap

    On the direct search for spin-dependent WIMP interactions

    Full text link
    We examine the current directions in the search for spin-dependent dark matter. We discover that, with few exceptions, the search activity is concentrated towards constraints on the WIMP-neutron spin coupling, with significantly less impact in the WIMP-proton sector. We review the situation of those experiments with WIMP-proton spin sensitivity, toward identifying those capable of reestablishing the balance.Comment: 7 pages, 4 figure

    MAMBO Mapping of Spitzer c2d Small Clouds and Cores

    Get PDF
    AIMS: To study the structure of nearby (< 500 pc) dense starless and star-forming cores with the particular goal to identify and understand evolutionary trends in core properties, and to explore the nature of Very Low Luminosity Objects (< 0.1 L_sun; VeLLOs). METHODS: Using the MAMBO bolometer array, we create maps unusually sensitive to faint (few mJy per beam) extended (approx. 5 arcmin) thermal dust continuum emission at 1.2 mm wavelength. Complementary information on embedded stars is obtained from Spitzer, IRAS, and 2MASS. RESULTS: Our maps are very rich in structure, and we characterize extended emission features (``subcores'') and compact intensity peaks in our data separately to pay attention to this complexity. We derive, e.g., sizes, masses, and aspect ratios for the subcores, as well as column densities and related properties for the peaks. Combination with archival infrared data then enables the derivation of bolometric luminosities and temperatures, as well as envelope masses, for the young embedded stars. CONCLUSIONS: (abridged) Starless and star-forming cores occupy the same parameter space in many core properties; a picture of dense core evolution in which any dense core begins to actively form stars once it exceeds some fixed limit in, e.g., mass, density, or both, is inconsistent with our data. Comparison of various evolutionary indicators for young stellar objects in our sample (e.g., bolometric temperatures) reveals inconsistencies between some of them, possibly suggesting a revision of some of these indicators.Comment: Accepted to A&A. In total 46 pages, with 20 pages of tables, figures, and appendices. High-resolution version of this article at https://www.xythosondemand.com/home/harvard_iic/Users/jkauffma/Public/mambo_spitzer.pd
    corecore