62 research outputs found

    Vibrationally coherent crossing and coupling of electronic states during internal conversion in beta-carotene

    Full text link
    Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wavepacket dynamics during the S2-S1 internal conversion in beta-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation

    Sub-10 fs pulses tunable from 480 to 980 nm from a NOPA pumped by a Yb:KGW source

    Full text link
    We describe two noncollinear optical parametric amplifier (NOPA) systems pumped by either the second (515 nm) or the third (343 nm) harmonic of an Yb:KGW amplifier, respectively. Pulse durations as short as 6.8 fs are readily obtained by compression with commercially available chirped mirrors. The availability of both second and third harmonic for NOPA pumping allows for gap-free tuning from 520 to 980 nm. The use of an intermediate NOPA to generate seed light at 780 nm extends the tuning range of the third-harmonic pumped NOPA towards 450 nm

    Direct observation of the coherent nuclear response after the absorption of a photon

    Full text link
    How molecules convert light energy to perform a specific transformation is a fundamental question in photophysics. Ultrafast spectroscopy reveals the kinetics associated with electronic energy flow, but little is known about how absorbed photon energy drives nuclear or electronic motion. Here, we used ultrabroadband transient absorption spectroscopy to monitor coherent vibrational energy flow after photoexcitation of the retinal chromophore. In the proton pump bacteriorhodopsin we observed coherent activation of hydrogen wagging and backbone torsional modes that were replaced by unreactive coordinates in the solution environment, concomitant with a deactivation of the reactive relaxation pathway

    Wide-Field Detected Fourier Transform CARS Microscopy.

    Get PDF
    We present a wide-field imaging implementation of Fourier transform coherent anti-Stokes Raman scattering (wide-field detected FT-CARS) microscopy capable of acquiring high-contrast label-free but chemically specific images over the full vibrational 'fingerprint' region, suitable for a large field of view. Rapid resonant mechanical scanning of the illumination beam coupled with highly sensitive, camera-based detection of the CARS signal allows for fast and direct hyperspectral wide-field image acquisition, while minimizing sample damage. Intrinsic to FT-CARS microscopy, the ability to control the range of time-delays between pump and probe pulses allows for fine tuning of spectral resolution, bandwidth and imaging speed while maintaining full duty cycle. We outline the basic principles of wide-field detected FT-CARS microscopy and demonstrate how it can be used as a sensitive optical probe for chemically specific Raman imaging

    Sub-10 fs Time-Resolved Vibronic Optical Microscopy.

    Get PDF
    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500-650 nm) and near-infrared (650-950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3-xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm-1 spectral resolution covering the 100-2000 cm-1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems

    Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale.

    Get PDF
    We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100-2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale.We acknowledge financial support from the EPSRC and the Winton Program for the Physics of Sustainability. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 758826). C.S. acknowledges financial support by the Royal Commission of the Exhibition of 1851

    A molecular movie of ultrafast singlet fission

    Get PDF
    Abstract: The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states. We assign the tuning and coupling modes, quantifying their relative intensities and contributions, and demonstrate how these modes coherently synchronise to drive the reaction. Our combined experimental and theoretical approach reveals the atomic-scale singlet fission mechanism and can be generalized to other ultrafast photoinduced reactions in complex systems. This will enable mechanistic insight on a detailed structural level, with the ultimate aim to rationally design molecules to maximise the efficiency of photoinduced reactions

    Strangeness Production close to Threshold in Proton-Nucleus and Heavy-Ion Collisions

    Full text link
    We discuss strangeness production close to threshold in p+A and A+A collision. Comparing the body of available K+, K0, K-, and Lambda data with the IQMD transport code and for some key observables as well with the HSD transport code, we find good agreement for the large majority of the observables. The investigation of the reaction with help of these codes reveals the complicated interaction of the strange particles with hadronic matter which makes strangeness production in heavy-ion collisions very different from that in elementary interactions. We show how different strange particle observables can be used to study the different facets of this interaction (production, rescattering and potential interaction) which finally merge into a comprehensive understanding of these interactions. We identify those observables which allow for studying (almost) exclusively one of these processes to show how future high precision experiments can improve our quantitative understanding. Finally, we discuss how the K+ multiplicity can be used to study the hadronic equation of state.Comment: 134 pages, pdf 3.3MB, version to be published in Physics Report

    Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors.

    Get PDF
    Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.EPSRC (EP/R025517/1), EPSRC (EP/M025330/1), ERC Horizon 2020 (grant agreements No 670405 and No 758826), ERC (ERC-2014-STG H2020 639088), Netherlands Organisation for Scientific Research, Swedish Research Council (VR, 2014-06948), Knut and Alice Wallenberg Foundation 3DEM-NATUR (no. 2012.0112), Royal Commission for the Exhibition of 1851, CNRS (France), US Department of Energy, Office of Science, Basic Energy Sciences, CPIMS Program, Early Career Research Program (DE-SC0019188)
    corecore