Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.EPSRC (EP/R025517/1),
EPSRC (EP/M025330/1),
ERC Horizon 2020 (grant agreements No 670405 and No 758826),
ERC (ERC-2014-STG H2020 639088),
Netherlands Organisation for Scientific Research,
Swedish Research Council (VR, 2014-06948),
Knut and Alice Wallenberg Foundation 3DEM-NATUR (no. 2012.0112),
Royal Commission for the Exhibition of 1851,
CNRS (France),
US Department of Energy, Office of Science, Basic Energy Sciences, CPIMS Program, Early Career Research Program (DE-SC0019188)