791 research outputs found

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Measurement of inclusive J/ψ\psi pair production cross section in pp collisions at s=13\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive J/ψ\psi pairs in pp collisions at a centre-of-mass energy s=13\sqrt{s} = 13 TeV is measured with ALICE. The measurement is performed for J/ψ\psi in the rapidity interval 2.502.5 0. The production cross section of inclusive J/ψ\psi pairs is reported to be 10.3±2.3(stat.)±1.3(syst.)10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)} nb in this kinematic interval. The contribution from non-prompt J/ψ\psi (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    No full text
    International audienceMeasurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s=13\sqrt{s} = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pTp_{\rm T}) of 0.2 GeV/c/c and up to pT=35p_{\rm T} = 35 GeV/c/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pTp_{\rm T} range 0.5<pT<260.5 < p_{\rm T} < 26 GeV/c/c at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pTp_{\rm T} dependence is observed in pp collisions, where the yield of high-pTp_{\rm T} electrons increases faster as a function of multiplicity than the one of low-pTp_{\rm T} electrons. The measurement in p-Pb collisions shows no pTp_{\rm T} dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p-Pb, and Pb-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/NchTR_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and NchT\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p-Pb, and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p-Pb)

    Light-flavor particle production in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV as a function of transverse spherocity

    No full text
    Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{\text{O}}^{p_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{p_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{\text{O}}^{p_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (η<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{\text{O}}^{p_{\rm T}=1}.Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s=13\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{{\it p}_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (η<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}

    Common femtoscopic hadron-emission source in pp collisions at the LHC

    No full text
    International audienceThe femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at s=13\sqrt{s} = 13 TeV from charged π\pi-π\pi correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass (mTm_{\rm T}) of the pairs, leading to the observation of a common scaling for both π\pi-π\pi and K-p, suggesting a collective effect. Further, the present results are compatible with the mTm_{\rm T} scaling of the p-p and pΛ-\Lambda primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles

    Prompt and non-prompt J/ψ/\psi production at midrapidity in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) and centrality dependence of the nuclear modification factor RAAR_{\rm AA} of prompt and non-prompt J/ψ/\psi, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. The measurements are carried out through the e+e{\rm e}^{+}{\rm e}^{-} decay channel at midrapidity (y|y| 5 GeV/cc, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pTp_{\rm T} intervals, and cover the kinematic region down to pTp_{\rm T} = 1.5 GeV/cc at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ/\psi in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ/\psi production from recombination of c and c\overline{\rm c} quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ/\psi. For non-prompt J/ψ/\psi, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties

    J/ψ\psi-hadron correlations at midrapidity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceWe report on the measurement of inclusive, non-prompt, and prompt J/ψ\psi-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (y<0.9|y| < 0.9) in the transverse momentum ranges pT<40 GeV/cp_{\rm T} < 40~\text{GeV}/c for the J/ψ\psi and 0.15<pT<100.15 < p_{\rm T} < 10 GeV/cc and η<0.9|\eta|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of Lint=34 nb1L_{\text{int}} = 34~\text{nb}^{-1} and Lint=6.9 pb1L_{\text{int}} = 6.9~\text{pb}^{-1}, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of E=4E = 4 and 9 GeV9~\text{GeV} in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of Lint=0.9 pb1L_{\text{int}} = 0.9~\text{pb}^{-1} and Lint=8.4 pb1L_{\text{int}} = 8.4~\text{pb}^{-1}, respectively. The results are presented as associated hadron yields per J/ψ\psi trigger as a function of the azimuthal angle difference between the associated hadrons and J/ψ\psi mesons. The integrated near-side and away-side correlated yields are also extracted as a function of the J/ψ\psi transverse momentum. The measurements are discussed in comparison to PYTHIA calculations

    Charm fragmentation fractions and cc{\rm c\overline{c}} cross section in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe total charm-quark production cross section per unit of rapidity dσ(cc)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(chc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc)/dy=219.6±6.3  (stat.)  11.8+10.5  (syst.)  2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0)\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p-Pb collisions compared with e+e\mathrm{e^{+}e^{-}} and ep\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc)=0.91±0.04  (stat.)0.09+0.08  (syst.)0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions
    corecore