106 research outputs found

    Going Solo: Discovery of the First Parthenogenetic Gordiid (Nematomorpha: Gordiida)

    Get PDF
    Despite the severe fitness costs associated with sexual reproduction, its persistence and pervasiveness among multicellular organisms testifies to its intrinsic, short-term advantages. However, the reproductive assurance hypothesis predicts selection favoring asexual reproduction in sparse populations and when mate finding is difficult. Difficulties in finding mates is especially common in parasites, whose life cycles involve multiple hosts, or being released from the host into the external environment where the parasite can find itself trapped without a sexual partner. To solve this problem and guarantee reproduction, parasites in numerous phyla have evolved reproductive strategies, as predicted by the reproductive assurance hypothesis, such as hermaphroditism or parthenogenesis. However, this type of strategy has not been reported from species in the phylum Nematomorpha, whose populations have often been described as sparse. A new Nematomorpha species, Paragordius obamai n. sp., was discovered from Kenya, Africa, and appears to have solved the problem of being trapped without a mate by eliminating the need for males. Paragordius obamai n. sp. represents the first and only known species within this phylum to reproduce asexually. To determine the mechanism of this mating strategy, we ruled out the involvement of reproduction manipulating endosymbionts by use of next generation sequencing data, thus suggesting that parthenogenesis is determined genetically and may have evolved as a means to assure reproduction. Since this new parthenogenetic species and a closely related gonochoristic North American congener, P. varius, are easy to propagate in the laboratory, these gordiids can be used as model systems to test hypotheses on the genetic advantages and disadvantages of asexual reproduction and the genetic determinants of reproductive strategies in parasites

    Description of Chordodes anthophorus (Gordiida) for the first time in Iran with an emphasis on scanning electron microscopy characters

    Get PDF
    We report a female Chordodes anthophorus from a Giant Asian Mantis (Hierodula membranacea) for the first time from Iran. Scanning electron microscopy (SEM) was used to describe the characters and substructures precisely. We demonstrate characteristic cuticular patterns for Chordodes anthophorus. The presence of five types of areoles including simple, tubercle, crowned and circumcluster areoles and also crowned areoles with long fi laments which is a common feature in females, confi rm our investigation. © 2021 S. Mohtasebi, M. J. Abbaszadeh Afshar, F. Tabatabaie, A. Schmidt-Rhaesa, published by Sciendo

    Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria

    Get PDF
    The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks premorphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll’s ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths

    The European union’s 2010 target: Putting rare species in focus

    Get PDF
    P. 167-185The European Union has adopted the ambitious target of halting the loss of biodiversity by 2010. Several indicators have been proposed to assess progress towards the 2010 target, two of them addressing directly the issue of species decline. In Europe, the Fauna Europaea database gives an insight into the patterns of distribution of a total dataset of 130,000 terrestrial and freshwater species without taxonomic bias, and provide a unique opportunity to assess the feasibility of the 2010 target. It shows that the vast majority of European species are rare, in the sense that they have a restricted range. Considering this, the paper discusses whether the 2010 target indicators really cover the species most at risk of extinction. The analysis of a list of 62 globally extinct European taxa shows that most contemporary extinctions have affected narrow-range taxa or taxa with strict ecological requirements. Indeed, most European species listed as threatened in the IUCN Red List are narrow-range species. Conversely, there are as many wide-range species as narrow-range endemics in the list of protected species in Europe (Bird and Habitat Directives). The subset of biodiversity captured by the 2010 target indicators should be representative of the whole biodiversity in terms of patterns of distribution and abundance. Indicators should not overlook a core characteristic of biodiversity, i.e. the large number of narrow-range species and their intrinsic vulnerability. With ill-selected indicator species, the extinction of narrowrange endemics would go unnoticedS

    The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa

    Get PDF
    Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century
    corecore