172 research outputs found

    Hertz: an imaging polarimeter

    Get PDF
    The University of Chicago polarimeter, Hertz, is designed for observations at the Caltech Submillimeter Observatory in the 350 µm atmospheric window. Initial observations with this instrument, the first array polarimeter for submillimeter observations, have produced over 700 measurements at 3σ or better. This paper summarizes the characteristics of the instrument, presents examples of its performance including polarization maps of molecular clouds and regions near the Galactic center, and outlines the opportunities for improvements with emphasis on requirements for mapping widely extended sources

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    [Aim] Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain.[Location] Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. [Time period] From 1960–1990 to 2061–2080. [Taxa] Fleshy-fruited plants and avian frugivores. [Methods] Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. [Results] Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. [Main conclusion] Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems.Fieldwork at Manú was conducted under the permits 041-2010-AG-DGFFSDGEFFS, 008-2011-AG-DGFFS-DGEFFS, 01-C/C-2010SERNANP-JPNM and 01-2011-SERNANP-PNM-JEF and supported by a scholarship from the German Academic Exchange Service to D.M.D. D.M.D. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant number 787638) and the Swiss National Science Foundation (grant number 173342), both awarded to C. H. Graham. W.D.K. acknowledges a Global Ecology grant from the University of Amsterdam Faculty Research Cluster. I.D. was funded by the Alexander von Humboldt Foundation and is now supported by the Balearic Government. S.A.F. was funded by the German Research Foundation (DFG; FR 3246/2-2) and the Leibniz Competition of the Leibniz Association (P52/2017)

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    AIM: Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain. LOCATION: Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. TIME PERIOD: From 1960–1990 to 2061–2080. TAXA: Fleshy-fruited plants and avian frugivores. METHODS: Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. RESULTS: Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. MAIN CONCLUSION: Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems

    Milestones in the Observations of Cosmic Magnetic Fields

    Get PDF
    Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. (Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant contributions in this area were not mentioned. Published pdf & ps files (with high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A global synthesis reveals biodiversity-mediated benefits for crop production

    Get PDF
    Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society

    The macroecology of phylogenetically structured hummingbird-plant networks

    Get PDF
    Aim To investigate the association between species richness, species' phylogenetic signal, insularity and historical and current climate with hummingbird-plant network structure. Location 54 communities along a c. 10,000 kilometer latitudinal gradient across the Americas (39ºN - 32ºS), ranging from sea level to c. 3700 m asl, located on the mainland and on islands, and covering a wide range of climate regimes. Methods We measured null-modeled corrected complementary specialization and bipartite modularity (compartmentalization) in networks of quantitative interactions between hummingbird and plant species. Using an ordinary least squares multi-model approach, we examined the influence of species richness, phylogenetic signal, insularity, and current and historical climate conditions on network structure. Results Phylogenetically-related species, especially plants, showed a tendency to interact with a similar array of partners. The spatial variation in network structure exhibited a constant association with species' phylogeny (R2=0.18-0.19). Species richness and environmental factors showed the strongest associations with network structure (R2=0.20-0.44; R2138 =0.32-0.45, respectively). Specifically, higher levels of complementary specialization and modularity were associated to species-rich communities and communities in which closely-related hummingbirds visited distinct sets of flowering species. On the mainland, warmer temperatures and higher historical temperature stability associated to higher levels of complementary specialization. Main conclusions Previous macroecological studies of interaction networks have highlighted the importance of environment and species richness in determining network structure. Here, for the first time, we report an association between species phylogenetic signal and network structure at macroecological scale. Specifically, null model corrected complementary specialization and modularity exhibited a positive association with species richness and a negative association with hummingbird phylogenetic signal, indicating that both high richness and high inter-specific competition among closely-related 150 hummingbirds exhibit important relationships with specialization in hummingbird-plant networks. Our results document how species richness, phylogenetic signal and climate associate with network structure in complex ways at macroecological scale

    A global synthesis reveals biodiversity-mediated benefits for crop production

    Get PDF
    Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

    Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    Get PDF
    Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world’s biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.The authors acknowledge the following funding: University of Canterbury Doctoral Scholarship (L.P.M.); The Marsden Fund grant UOC1705 (J.M.T., L.P.M.); The São Paulo Research Foundation - FAPESP 2014/01986-0 (M.G., C.E.), 2015/15172-7 and 2016/18355-8 (C.E.), 2004/00810-3 and 2008/10154-7 (C.I.D., M.G., M.A.P.); Earthwatch Institute and Conservation International for financial support (C.I.D., M.G., M.A.P.); Carlos Chagas Filho Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ grant E-26/200.610/2022 (C.E.); Brazilian Research Council grants 540481/01-7 and 304742/2019-8 (M.A.P.) and 300970/2015-3 (M.G.); Rufford Small Grants for Nature Conservation No. 22426–1 (J.C.M., I.M.), No. 9163-1 (G.B.J.) and No. 11042-1 (MCM); Universidade Estadual de Santa Cruz (Propp-UESC; No. 00220.1100.1644/10-2018) (J.C.M., I.M.); Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB (No. 0525/2016) (J.C.M., I.M.); European Research Council under the European Union’s Horizon 2020 research and innovation program (grant 787638) and The Swiss National Science Foundation (grant 173342), both awarded to C. Graham (D.M.D.); ARC SRIEAS grant SR200100005 Securing Antarctica’s Environmental Future (D.M.D.); German Science Foundation—Deutsche Forschungsgemeinschaft PAK 825/1 and FOR 2730 (K.B.G., E.L.N., M.Q., V.S., M.S.), FOR 1246 (K.B.G., M.S., M.G.R.V.) and HE2041/20-1 (F.S., M.S.); Portuguese Foundation for Science and Technology - FCT/MCTES contract CEECIND/00135/2017 and grant UID/BIA/04004/2020 (S.T.) and contract CEECIND/02064/2017 (L.P.S.); National Scientific and Technical Research Council, PIP 592 (P.G.B.); Instituto Venezolano de Investigaciones Científicas - Project 898 (V.S.D.)
    corecore