377 research outputs found

    Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization

    Get PDF
    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions

    A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death

    Get PDF
    Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors

    Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation

    Get PDF
    We have inactivated pRb, p107, and p130 in astrocytes by transgenic expression of T (a truncated SV40 T antigen) under the GFAP promoter. Founder mice died perinatally with extensive expansion of neural precursor and anaplastic astrocyte populations. In astrocytes, aberrant proliferation and extensive apoptosis were induced. Using a conditional allele of T, early lethality was circumvented, and adult mice developed high-grade astrocytoma, in which regions of decreased apoptosis expressed activated Akt. Indeed, astrocytoma development was accelerated in a , but not , background. These studies establish a highly penetrant preclinical model for astrocytoma based on events observed in the human disease and further provide insight into the role of PTEN mutation in astrocytoma progression

    The Tetraspanin Cd9 Associates with Transmembrane TGF-α and Regulates TGF-α–Induced Egf Receptor Activation and Cell Proliferation

    Get PDF
    Transforming growth factor-α (TGF-α) is a member of the EGF growth factor family. Both transmembrane TGF-α and the proteolytically released soluble TGF-α can bind to the EGF/TGF-α tyrosine kinase receptor (EGFR) and activate the EGFR-induced signaling pathways. We now demonstrate that transmembrane TGF-α physically interacts with CD9, a protein with four membrane spanning domains that is frequently coexpressed with TGF-α in carcinomas. This interaction was mediated through the extracellular domain of transmembrane TGF-α. CD9 expression strongly decreased the growth factor– and PMA- induced proteolytic conversions of transmembrane to soluble TGF-α and strongly enhanced the TGF- α–induced EGFR activation, presumably in conjunction with increased expression of transmembrane TGF-α. In juxtacrine assays, the CD9-induced EGFR hyperactivation by transmembrane TGF-α resulted in increased proliferation. In contrast, CD9 coexpression with transmembrane TGF-α decreased the autocrine growth stimulatory effect of TGF-α in epithelial cells. This decrease was associated with increased expression of the cdk inhibitor, p21CIP1. These data reveal that the association of CD9 with transmembrane TGF-α regulates ligand-induced activation of the EGFR, and results in altered cell proliferation

    CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs

    Get PDF
    CSpritz is a web server for the prediction of intrinsic protein disorder. It is a combination of previous Spritz with two novel orthogonal systems developed by our group (Punch and ESpritz). Punch is based on sequence and structural templates trained with support vector machines. ESpritz is an efficient single sequence method based on bidirectional recursive neural networks. Spritz was extended to filter predictions based on structural homologues. After extensive testing, predictions are combined by averaging their probabilities. The CSpritz website can elaborate single or multiple predictions for either short or long disorder. The server provides a global output page, for download and simultaneous statistics of all predictions. Links are provided to each individual protein where the amino acid sequence and disorder prediction are displayed along with statistics for the individual protein. As a novel feature, CSpritz provides information about structural homologues as well as secondary structure and short functional linear motifs in each disordered segment. Benchmarking was performed on the very recent CASP9 data, where CSpritz would have ranked consistently well with a Sw measure of 49.27 and AUC of 0.828. The server, together with help and methods pages including examples, are freely available at URL: http://protein.bio.unipd.it/cspritz/

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Essential Role of Gab1 for Signaling by the C-Met Receptor in Vivo

    Get PDF
    The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1−/− embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1−/− embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1−/−:c-Met+/− embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins

    1, 9-Pyrazoloanthrones Downregulate HIF-1α and Sensitize Cancer Cells to Cetuximab-Mediated Anti-EGFR Therapy

    Get PDF
    Cetuximab, a monoclonal antibody that blocks the epidermal growth factor receptor (EGFR), is currently approved for the treatment of several types of solid tumors. We previously showed that cetuximab can inhibit hypoxia-inducible factor-1 alpha (HIF-1α) protein synthesis by inhibiting the activation of EGFR downstream signaling pathways including Erk, Akt, and mTOR. 1, 9-pyrazoloanthrone (1, 9 PA) is an anthrapyrazolone compound best known as SP600125 that specifically inhibits c-jun N-terminal kinase (JNK). Here, we report 1, 9 PA can downregulate HIF-1α independently of its inhibition of JNK. This downregulatory effect was abolished when the oxygen-dependent domain (ODD) of HIF-1α (HIF-1α-ΔODD, the domain responsible for HIF-1α degradation) was experimentally deleted or when the activity of HIF-1α prolyl hydroxylase (PHD) or the 26S proteasomal complex was inhibited, indicating that the 1, 9 PA downregulates HIF-1α by promoting PHD-dependent HIF-1α degradation. We found that the combination of 1, 9 PA and cetuximab worked synergistically to induce apoptosis in cancer cells in which cetuximab or 1, 9 PA alone had no or only weak apoptotic activity. This synergistic effect was substantially decreased in cancer cells transfected with HIF-1α-ΔODD, indicating that downregulation of HIF-1α was the mechanism of this synergistic effect. More importantly, 1, 9 PA can downregulate HIF-1α in cancer cells that are insensitive to cetuximab-induced inhibition of HIF-1α expression due to overexpression of oncogenic Ras (RasG12V). Our findings suggest that 1, 9 PA is a lead compound of a novel class of drugs that may be used to enhance the response of cancer cells to cetuximab through a complementary effect on the downregulation of HIF-1α

    R497K polymorphism in epidermal growth factor receptor gene is associated with the risk of acute coronary syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies suggested that genetic polymorphisms in the epidermal growth factor receptor (EGFR) gene had been implicated in the susceptibility to some tumors and inflammatory diseases. EGFR has been recently implicated in vascular pathophysiological processes associated with excessive remodeling and atherosclerosis. Acute coronary syndrome (ACS) is a clinical manifestation of preceding atherosclerosis. Our purpose was to investigate the association of the EGFR polymorphism with the risk of ACS. In this context, we analyzed the HER-1 R497K and EGFR intron 1 (CA)<sub>n </sub>repeat polymorphisms in 191 patients with ACS and 210 age- and sex-matched controls in a Chinese population, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) strategy and direct sequencing.</p> <p>Results</p> <p>There were significant differences in the genotype and allele distribution of R497K polymorphism of the EGFR gene between cases and controls. The <it>Lys </it>allele had a significantly increased risk of ACS compared with the <it>Arg </it>allele (adjusted OR = 1.49, 95% CI: 1.12–1.98, adjusted <it>P </it>= 0.006). However, no significant relationship between the number of (CA)<sub>n </sub>repeats of EGFR intron 1 (both alleles < 20 or any allele ≥ 20) and the risk of ACS was observed (adjusted OR = 0.97, 95% CI: 0.58–1.64, adjusted <it>P </it>= 0.911). Considering these two polymorphisms together, there was no statistically significant difference between the two groups.</p> <p>Conclusion</p> <p>R497K polymorphism of the EGFR gene is significantly associated with the risk of ACS. Our data suggests that R497K polymorphism may be used as a genetic susceptibility marker of the ACS.</p

    Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus

    Get PDF
    We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus
    corecore