202 research outputs found
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming
Climate sensitivity is defined as the change in global mean equilibrium
temperature after a doubling of atmospheric CO2 concentration and provides a
simple measure of global warming. An early estimate of climate sensitivity,
1.5-4.5{\deg}C, has changed little subsequently, including the latest
assessment by the Intergovernmental Panel on Climate Change.
The persistence of such large uncertainties in this simple measure casts
doubt on our understanding of the mechanisms of climate change and our ability
to predict the response of the climate system to future perturbations. This has
motivated continued attempts to constrain the range with climate data, alone or
in conjunction with models. The majority of studies use data from the
instrumental period (post-1850) but recent work has made use of information
about the large climate changes experienced in the geological past.
In this review, we first outline approaches that estimate climate sensitivity
using instrumental climate observations and then summarise attempts to use the
record of climate change on geological timescales. We examine the limitations
of these studies and suggest ways in which the power of the palaeoclimate
record could be better used to reduce uncertainties in our predictions of
climate sensitivity.Comment: The final, definitive version of this paper has been published in
Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All
rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer
In gastric cancer, a new epigenetic mechanism of tumour suppressor loss has been suggested where the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is responsible for loss of expression of RUNX3. This is consistent with EZH2 upregulation in multiple cancer types being associated with poor prognosis. We investigated whether EZH2 influences the expression of RUNX3 in colorectal cancer (CRC) and whether this is independent of methylation. We determined protein and messenger RNA (mRNA) levels of EZH2 and RUNX3 and assessed RUNX3 methylation with methylation-specific polymerase chain reaction using 72 human CRCs and 8 CRC cell lines. We assessed the effect of efficient RNA interference-mediated knockdown of EZH2 on RUNX3 levels, cell viability and H3K27 trimethylation of the RUNX3 promoter using chromatin immunoprecipitation. Despite higher levels of EZH2 and lower levels of RUNX3 in CRC specimens in general, no inverse correlation between EZH2 and RUNX3 in paired samples was found arguing against a major role for histone methylation in silencing RUNX3 in CRC. Conversely, downregulation of RUNX3 mRNA in the same tumours was associated with RUNX3 DNA methylation (P < 0.05). In cell lines, knockdown of EZH2 removed the repressive chromatin marks from RUNX3 but did not result in RUNX3 re-expression. However, it prevented the re-silencing of RUNX3 after the removal of demethylating agents. In conclusion, DNA methylation is primarily responsible for the transcriptional silencing of RUNX3 in CRC, but EZH2 and histone methylation are necessary for its methylation-dependent re-silencing after the removal of demethylating agents. These results would predict that inhibitors of EZH2 and histone methylation would enhance the effects of demethylating agents in cancer therapy
Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover
Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (âŒ50% and âŒ90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg haâ1 (155 and 186 bu acreâ1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg haâ1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg haâ1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted
Differences in Treatment and Outcome of Pancreatic Adenocarcinoma Stage I and II in the EURECCA Pancreas Consortium
Surgical oncolog
Recommended from our members
Fine-scale temporal characterization of trends in soil water dissolved organic carbon and potential drivers
Long-term monitoring of surface water quality has shown increasing concentrations of Dissolved Organic Carbon (DOC) across a large part of the Northern Hemisphere. Several drivers have been implicated including climate change, land management change, nitrogen and sulphur deposition and CO2 enrichment. Analysis of stream water data, supported by evidence from laboratory studies, indicates that an effect of declining sulphur deposition on catchment soil chemistry is likely to be the primary mechanism, but there are relatively few long term soil water chemistry records in the UK with which to investigate this, and other, hypotheses directly. In this paper, we assess temporal relationships between soil solution chemistry and parameters that have been argued to regulate DOC production and, using a unique set of co-located measurements of weather and bulk deposition and soil solution chemistry provided by the UK Environmental Change Network and the Intensive Forest Monitoring Level II Network . We used statistical non-linear trend analysis to investigate these relationships at 5 forested and 4 non-forested sites from 1993 to 2011. Most trends in soil solution DOC concentration were found to be non-linear. Significant increases in DOC occurred mostly prior to 2005. The magnitude and sign of the trends was associated qualitatively with changes in acid deposition, the presence/absence of a forest canopy, soil depth and soil properties. The strongest increases in DOC were seen in acidic forest soils and were most clearly linked to declining anthropogenic acid deposition, while DOC trends at some sites with westerly locations appeared to have been influenced by shorter-term hydrological variation. The results indicate that widespread DOC increases in surface waters observed elsewhere, are most likely dominated by enhanced mobilization of DOC in surficial organic horizons, rather than changes in the soil water chemistry of deeper horizons. While trends in DOC concentrations in surface horizons have flattened out in recent years, further increases may be expected as soil chemistry continues to adjust to declining inputs of acidity
- âŠ