35 research outputs found

    Reactivity of Metakaolin in Alkaline Environment: Correlation of Results from Dissolution Experiments with XRD Quantifications

    Get PDF
    Systematic investigation of filtrates and filter residues resulting from a 24 h treatment of metakaolin in different alkaline solutions were performed. On filtered metakaolin particles, inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements reveal an enrichment of iron and titanium, which suggests an inhomogeneous distribution of these cations. Since the SiO2/Al2O3 ratio remains constant in all filter residues examined, the dissolution of the Si and Al monomers is congruent. Structural differences, identified by attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) as a consequence of alkali uptake, influence the X-ray scattering contribution of metakaolin, and thus quantifications with the partial or no known crystal structure (PONKCS) method. This leads to deviations between the degree of reaction calculated from Si and Al solubility from filtrate and that quantified by quantitative powder X-ray diffraction (QPXRD) using the filter residue. Nevertheless, the described changes do not cause a shift in the X-ray amorphous hump in case of congruent dissolution, and thus allow the quantification of the metakaolin before and after dissolution with the same hkl-phase model

    Influence of electrospray deposition on C_60 molecular assemblies

    Get PDF
    Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solution, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method to thermal evaporation for the preparation of C; 60; on different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated molecules accompanied by surface modifications

    Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and Their High-vacuum Electrospray Deposition

    Get PDF
    Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a "layer-by-layer" extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique. Scanning probe microscopy imaging provides valuable information on the possible thermally induced partial planarization of such giant dendritic PPs on a metal surface

    2D KBr/Graphene Heterostructures-Influence on Work Function and Friction

    Get PDF
    The intercalation of graphene is an effective approach to modify the electronic properties of two-dimensional heterostructures for attractive phenomena and applications. In this work, we characterize the growth and surface properties of ionic KBr layers altered by graphene using ultra-high vacuum atomic force microscopy at room temperature. We observed a strong rippling of the KBr islands on Ir(111), which is induced by a specific layer reconstruction but disappears when graphene is introduced in between. The latter causes a consistent change in both the work function and the frictional forces measured by Kelvin probe force microscopy and frictional force microscopy, respectively. Systematic density functional theory calculations of the different systems show that the change in work function is induced by the formation of a surface dipole moment while the friction force is dominated by adhesion forces

    Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

    Get PDF
    A novel reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line pattern. Comprehensive calculations by DFT, taking into account the observed periodicities, resulted in a new low-energy reconstruction. However, it is fully relaxed into a common cubic structure when a monolayer of graphene is located between substrate and KBr. By using Kelvin probe force microscopy, the work functions of the reconstructed and the cubic configuration of KBr were measured and indicate, in accordance with the DFT calculations, a difference of nearly 900 meV. The difference is due to the strong interaction and local charge displacement of the K; +; /Br; -; ions and the Ir(111) surface, which are reduced by the decoupling effect of graphene, thus yielding different electrical and mechanical properties of the top KBr layer

    Observation of robust superlubricity of MoSâ‚‚ on Au(111) in ultrahigh vacuum

    Get PDF
    The structural and superlubric properties of single layer MoS2 on Au(1 1 1) forming moiré superlattice structures have been investigated by means of ultrahigh vacuum atomic force microscope with bimodal and contact modes. We synthesize epitaxial monolayer MoS2 flakes on the Au(1 1 1) surface in ultrahigh vacuum. Using friction force microscopy, atomic friction measurements indicate a superlubric regime between the tip apex and the moiré corrugated MoS2 surface in which the friction force remains at an ultralow value and is independent from normal load. Superlubricity conditions are observed for different loads and velocities which indicates the absence of out-of-plane deformations. We find that the MoS2 layer including the moiré superlattice modulation originating from the natural misfit between MoS2 and the Au(1 1 1) substrate is relatively rigid. We also demonstrate a low friction coefficient of the MoS2 surface crossing a single Au(1 1 1) step. Our results open up a new avenue for minimizing friction in nanoscale electronic devices and other dry rigid contacts used in aerospace lubrication

    Velocity Dependence of Moiré Friction

    Get PDF
    Friction force microscopy experiments on moiré superstructures of graphene-coated platinum surfaces demonstrate that in addition to atomic stick–slip dynamics, a new dominant energy dissipation route emerges. The underlying mechanism, revealed by atomistic molecular dynamics simulations, is related to moiré ridge elastic deformations and subsequent relaxation due to the action of the pushing tip. The measured frictional velocity dependence displays two distinct regimes: (i) at low velocities, the friction force is small and nearly constant; and (ii) above some threshold, friction increases logarithmically with velocity. The threshold velocity, separating the two frictional regimes, decreases with increasing normal load and moiré superstructure period. Based on the measurements and simulation results, a phenomenological model is derived, allowing us to calculate friction under a wide range of room temperature experimental conditions (sliding velocities of 1–104 nm/s and a broad range of normal loads) and providing excellent agreement with experimental observations

    Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers

    Get PDF
    The generation of thin films of oriented functionalized metal–organic frameworks (MOFs) on self-assembled monolayers was achieved via direct growth from solution. Specifically, the direct growth from solvothermally pretreated synthesis solutions of two different MOF structures with amino functionality was investigated: the flexible framework structure NH2–Fe–MIL-88B and the mesoporous MOF NH2–Fe–MIL-101 with its remarkably large unit cell. Both MOF structures can be grown in a highly oriented fashion on self-assembled monolayers of 16-mercaptohexadecanoic acid on gold. With the help of a quartz crystal microbalance we demonstrate that the introduction of amino groups into the framework strongly affects the host–guest interactions towards ethanol molecules: thin films of NH2–Fe–MIL-88B show a significantly higher uptake of ethanol than unfunctionalized Fe–MIL-88B films. In situ XRD experiments during sorption of ethanol showed that the amino group does have an impact on the cell parameters of the structure, but the flexibility ("breathing") during ad- and desorption of ethanol is similar for the functionalized and the unfunctionalized structures. It is anticipated that the implementation of chemical functionalities into oriented MOF films will lead to selective host–guest interactions that are of key importance for chemical sensing and other applications

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    corecore