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Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at

the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray

deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solu-

tion, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be

fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method

to thermal evaporation for the preparation of Cgg on different surfaces and compare, for sub-monolayer coverages, the influence of

the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal sur-

faces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated

molecules accompanied by surface modifications.

Introduction

Electrospray deposition in high vacuum (HV-ESD) is a well-
established technique for the introduction of molecules into
high-vacuum environments and the deposition of these mole-
cules on surfaces [1-3]. Based on electrospray ionisation [4],
HV-ESD gives the possibility to study complex or fragile mole-

cules that are impossible to safely deposit onto surfaces with

traditional deposition techniques. So far, using HV-ESD, nu-
merous molecular species with potential applications in biology
and photovoltaics, or with magnetic or thermal expansion prop-
erties have been deposited on a variety of materials, ranging
from metal surfaces [5-13], over metal oxides [14] and insu-

lating substrates [15] to graphene monolayers on metals [16].
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In HV-ESD-based devices, a solution containing the molecules
reaches an emitter located in front of the entrance capillary, as
shown in Figure 1a. Then, by applying a voltage difference,
typically 1.2 kV, between the solution and the capillary,
droplets of solvent and diluted molecules are created and accel-
erated towards the capillary, through the differential pumping
vacuum system, finally reaching the sample in ultrahigh
vacuum. The main requirement for the suitability of molecules
for ESD is their solubility in a compatible solvent. A drawback
is, therefore, the presence of the solvent itself. Various imple-
mentations of electrospray deposition setups were developed to
allow for the selection of the molecular species via mass spec-
trometer filtering, showing successful depositions [8,17,18].
When no filtering is added, the setup is working in an all-in-line
configuration as shown in Figure 1a. In such a situation, all
species introduced in the vacuum that are not evacuated via the
pumping system or adsorbed to a wall of the device can reach
the sample. Nevertheless, the contamination from solvent intro-
duction can be reduced down to conditions compatible with
high-resolution scanning probe microscopy (SPM) techniques
[10,12].

Buckminsterfullerene Cgg, scheme in Figure 1b, is among the
most extensively studied molecules in surface science, espe-
cially in SPM under UHV conditions. The ease of its thermal
evaporation, the organised structure generally obtained, and the
potential of its uses have made Cgy a model case for on-surface
molecular studies [19-27]. Two-dimensional Cg layers have
been observed on metals [20,25,28] and metal oxide semicon-
ductors [23,24], while large three-dimensional molecular
islands or clusters have been revealed on ionic crystals or bulk
insulators [22,26,27,29]. Most of the studies have been per-
formed after thermal evaporation (TE) of Cg( from a crucible,
but Cg is also one of the first molecules studied in HV-ESD
experiments [5,30].

Here, we present a comparison between TE and HV-ESD
regarding the adsorption and structure formation of Cgy mole-

cules on surfaces at low coverages, that is, below one mono-
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layer down to single molecules. We used a non-contact atomic
force microscope (nc-AFM) working at room temperature to
study formation and shape of Cgq islands on three substrates
with different intrinsic properties. These are, first, Au(111), a
metal surface widely used in SPM studies, second, KBr(001), a
bulk insulator allowing for the decoupling of molecular species
and used as model surface in nc-AFM measurements [31-34],
and, finally, NiO(001), a p-type wide-bandgap metal oxide with
potential applications in photovoltaics [35-37]. For all cases, we
show the typical Cg( structures formed by TE and compare
these with the results from HV-ESD. This allows us to discuss
the influence of the HV-ESD method for the different surfaces.

Results and Discussion
Cep On Au(111)

The deposition of Cgy molecules on a Au(111) surface at room
temperature via TE is known to lead to the formation of mono-
layer islands until the surface is fully covered [21,25,28]. A
nc-AFM topography image of a Au(111) surface covered with
0.35 monolayers of Cgy molecules is shown in Figure 2a. Large
clean terraces separated by monoatomic step edges are ob-
served. On top, the adsorbed Cgg molecules are seen in two
possible locations. First, all step edges of the surface are filled
with Cgq (see white arrows). Step edges are known to be favor-
able anchoring sites and to easily trap molecules. Second, Cgg
molecules are observed in islands formed on the Au(111) sur-
face and aligned along the step edges of the surface. Islands are
observed at the bottom or on top of step edges with few of them
on both sides (see black arrow). These islands, similar to what
has been already reported in literature are monolayers, the size
of which depends on the coverage [21,25,28]. In our case, with

a coverage of 0.35 monolayers, their average size is 1500 nm?.

At high coverages, Cgo molecules deposited on Au(111) sur-
faces with HV-ESD are known to form large assemblies [5]. A
Au(111) surface with a coverage of 0.30 monolayers of Cgg
after HV-ESD, similar to that after TE in Figure 2a, is shown in
the topography map in Figure 2b. Monoatomic step edges and
terraces of a few hundreds of nanometers in size are observed,

Emitter with . . . . Sample

a Capill Differential pumping stages
— apl’ - ﬁ
ngh Voltage 1 1 0-2 1 0-5 1 0-7

(typically 1.2 kV)

P(mbar)

Figure 1: (a) Scheme of the high-vacuum electrospray deposition device. Typical working pressures of the different chambers are indicated. (b)

Representation of a Cgg molecule.
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Figure 2: Cgg on a Au(111) surface. (a) After TE and (b) After
HV-ESD. (c) Zoom on an island after HV-ESD. (d) Zoom on a Au(111)
terrace with covered herringbone kinks, after HV-ESD. The contrast
has been highly modified. Parameters: (a) fo = 0.961 MHz,

Az =600 pm, Afy = —40 Hz; (b,d) fy = 153 kHz, A1 = 5 nm, Af; = -15
Hz; (c) fo = 1.079 MHz, A, = 500 pm, Afy = —60 Hz. Scale bar: (a, b)
100 nm, (c) 5 nm, and (d) 25 nm.

suggesting a limited influence of the HV-ESD method. The Cg
molecules cover step edges and form monolayer islands, simi-
lar to TE. High-resolution imaging of the islands, shown in
Figure 2c, confirms the hexagonal lattice arrangement of Cgg
with a lattice parameter close to 1 nm. An important difference
is that many of the Cg islands are observed in the middle of the
terraces, that is, far away from step edges. This phenomenon,
not observed for TE, suggests a difference in the nucleation
during island formation. It could be explained by the presence
of defects on the surface. These defects, induced by the
HV-ESD method itself, could allow for the trapping of Cg mol-
ecules and island nucleation far away from step edges. The sep-
aration distance between islands can also be small, as indicated
by the white arrow and observed in several place in Figure 2b.
Another difference compared to TE is the size and numbers of
the islands. At a coverage of 0.30 monolayers, the average size
of the islands after HV-ESD is 600 nmz, that is, by a factor of
2.5 smaller than after TE. This reduced size also indicates the
presence of additional nucleation sites that can facilitate the for-
mation and stabilization of these smaller islands.

At last, one has to mention the effect of the HV-ESD method on
surface pollution. This is revealed by some small dots, forming
lines as shown on the Figure 2d extracted from Figure 2b but
with an enhanced contrast. Theses dots are located on the
elbows of the herringbone reconstruction, a favorable trapping
site [38]. The height of the dots is too small to be Cgy mole-
cules and the dots are therefore attributed to solvent. Neverthe-
less, such defects can influence the nucleation and the size of

Cgp islands. The presence of the solvent on the surface can also
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be increased, as shown in part 1 of Supporting Information
File 1, but shape, size, and distribution of the Cg islands are

still preserved.

We have shown the limited influence of the HV-ESD method
on the Cgq island structures. Interestingly, a reduced size and a
more dispersed distribution of the islands is found. Similar
results are obtained for a Ag(111) surface, as shown in part 2 of
Supporting Information File 1. The absence of favorable
anchoring sites, similar to kinks in the herringbone reconstruc-
tion, on Ag(111) suggests that not only the adsorbed solvent
molecules are responsible for the nucleation of islands in the
middle of the terraces.

Cep on KBr(001) surface

The deposition of Cgg on bulk insulators is known to lead to the
creation of large islands [22,31]. A typical KBr(001) surface
after TE of Cg( is shown in the nc-AFM topography image in
Figure 3a. Large clean terraces separated by monoatomic steps
edges are observed. The preferential alignment of the step edges
is along the [110] directions. Cg( islands are found distributed
on all surfaces, but always along a step edge. They present
favorable edge directions, following the sixfold symmetry of
the Cgq lattice. The height of the Cg( islands is about three
monolayers. A dewetting process is also observed [22,26] as
visible by the more round shape of the second- and third-layer

step edges of Cgq islands.

The deposition of Cgy on KBr(001) via HV-ESD is more chal-
lenging. The insulating nature of the KBr substrate can lead to a
charging of the surface induced by the deposition of charged
species. This can have a strong influence on the surface local
charge and, eventually, on island formation [15] during
HV-ESD. To improve scan conditions, imaging was performed
a few hours after HV-ESD to reduce the charging effects [39].

A low coverage of Cgp on KBr(001) obtained after HV-ESD is
shown in the topography image of Figure 3b. The KBr(001)
surface presents similar large terraces and step edges as clean
KBr(001). The Cgo molecules are forming small cluster visible
as many small dots dispersed on the terraces or along step
edges. A zoom on such a cluster is shown in Figure 3d. The
presence of these small clusters indicates a low diffusion of the

Cgo molecules, contrary to the TE deposition.

At higher coverages, but still below one monolayer, Cgy mole-
cules form islands dispersed on the surface, as shown in
Figure 3c. The islands are clearly different to what is obtained
after TE of Cg(, also shown by the zoom on such an island in
Figure 3e. Their average contact area, that is, the surface occu-

pied by the first layer on the KBr surface, is about 1100 nm?,

554



PR TRt

.9

het

Beilstein J. Nanotechnol. 2021, 12, 552-558.

T4
£3
£2
(®)]

B
20

e i S
0 10 20 30 40 50 60
Distance (nm)

Figure 3: Cgp on a KBr(001) surface. (a) After TE, (b) after low-coverage HV-ESD, and (c) after high-coverage HV-ESD; inset: area with a modified
contrast. (d) Zoom on a small cluster from (b). (e) Zoom on an island from (c). (f) Corresponding height profiles from (c) and (d). Parameters:

(a) fy = 156 kHz, A1 = 4 nm, Afy = -5 Hz; (b, d) f> = 1.079 MHz, A, = 800 pm, Af, = =30 Hz; (c, e) f; = 152 kHz, A = 8 nm, Af; = -8 Hz. The crystal
lattice orientation is shown in (b). Scale bar: (a—c) 100 nm, (d) 2 nm, (e) 10 nm.

less than a tenth of what is obtained after TE (12000 nm?).
Their height distribution is enlarged compared to islands formed
after TE, suggesting a growth mechanism that favors a 3D
growth over layer-by-layer growth. A few profiles acquired on
Cgo islands in Figure 3¢ are shown in Figure 3f and compared
to the profile acquired on the small cluster of Figure 3d. The
number of layers ranges from one to at least five. Moreover, the
islands present a more rounded shape, compared to TE islands,

and no direction favored by the sixfold symmetry is observed.

The influence of HV-ESD on the surface itself can also be seen.
First, monolayer-deep pits are visible, see the arrow in the
contrast-modified inset of Figure 3c and in part 3 of Supporting
Information File 1. They are similar to the pits created after
electron and ion bombardment [40-43] or low-temperature
plasma exposure of such a surface [44]. Such defects are known
to increase molecular trapping and their creation is therefore
studied for those reasons [32,43,45,46]. In HV-ESD deposition,
their presence can be reduced but not inhibited without
annealing of the surface [44].

Cep on NiO(001) surface

NiO is a wide-bandgap metal oxide with potential applications
in organic photovoltaics [47]. To date, only few SPM studies
have focused on the adsorption of organic molecules on NiO
surfaces [35-37]. Because organic dyes are large and complex
molecules, their TE is impossible, making HV-ESD methods
the only deposition technique compatible with fundamental
studies. A first step is the study of the HV-ESD influence on the
deposition of a simple well-known molecule.

A nc-AFM topography image of a NiO(001) surface after the
deposition of Cg( via TE is shown in Figure 4a. Terraces in the
NiO(001) surface are observed, separated by monoatomic steps.
Also, because of the high reactivity of the surface, the presence
of defects, already reported [37] and visible as small holes,
should be noted. Cgq on the surface can easily be identified as
large bright areas corresponding to monolayer islands. These
islands show irregular contour paths without preferential orien-
tation as well as holes free of molecules. A zoom on such an
island is displayed in the inset. The typical hexagonal lattice
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Figure 4: Cg on a NiO(001) surface. (a) Large scale topography nc-AFM image after TE; inset: zoom on an island with molecular resolution. (b) To-
pography nc-AFM image after HV-ESD. Parameters: (a) f{ = 169 kHz, A1 = 8 nm, Afy = -5 Hz; (b) fo = 1.057 MHz, Ao = 800 pm, Af, = -10 Hz. Scale

bar: (a, b) 50 nm, inset 2 nm.

with a distance of 1 nm between Cgn molecules is observed.
The islands are also distributed on the whole surface and their
area depends on the size of the terrace they lie on, that is, the
island size increases with the terrace size. This observation is
compatible with the diffusion of molecules on terraces but not
over step edges, yielding a larger number of molecules and,
therefore, larger islands on larger terraces. Finally, small protru-
sions are often observed close to defects possibly correspond-
ing to small clusters of molecules.

The possibility to perform HV-ESD on a NiO surface is of
interest for the elaboration of p-type solar cell devices
[36,37,48]. The nc-AFM topography image of Figure 4b is ob-
tained after HV-ESD of Cg( on a clean NiO(001) surface. Even
though the high-quality cleavage of the surface, visible by the
large terrace, would enable Cgy molecules to form large islands
via diffusion, no islands are observed. Only small protrusions
can be distinguished. The small size of these protrusions is
compatible with small clusters or single molecules.

The influence of the ESD is limited for the NiO(001) surface.
No major impact, similar to KBr, is observed. Also, neither a
solvent layer nor the charging of the sample because of
deposited ions are observed. Therefore, the observation of
single Cgp molecules on the NiO(001) surface is the major
outcome of HV-ESD. The presence of single molecules at room
temperature hints at a reduced diffusion. A possible explana-
tion is the creation of defects during HV-ESD favoring the trap-

ping of molecules directly upon landing.

Conclusion

We show the influence of HV-ESD on the surface preparation
of molecular layers. This method is known to be a good alterna-
tive to TE when working with non-volatile molecules and has

proven to be compatible with sensitive techniques, such as low-

temperature AFM with CO tip imaging [10,12]. Nevertheless,
we have shown some influence on the surfaces and the forma-
tion of molecular assemblies that should not be neglected when
studying molecular structures, especially, when no post-deposi-
tion treatment is carried out. The influence of HV-ESD on the
surfaces themselves is negligible under proper conditions. The
influence on the molecular assemblies depends on the surface.
For metals, HV-ESD is found to reduce the size of the islands.
For the alkali halide KBr and the metal oxide NiO, the struc-
ture size is reduced down to single molecules. In all cases, the
creation of defects, possibly combined with remaining solvent,
reduces the diffusion length of the molecules. For studies in
which large molecular structures are needed, a gentle annealing
eliminates the spray influence. Additionally, when focusing on
single molecules, small aggregates, or islands, the HV-ESD
method is well suited and could open new possibilities to stabi-

lize single molecules at room temperature.

Experimental

Sample preparation

Au(111) single crystals (Mateck GmbH) were prepared under
UHV conditions by several cycles of Ar" sputtering and
annealing at 750 K. KBr(001) crystals (Mateck GmbH) were
prepared either by cleavage in air and quick introduction in
UHV or by cleavage under UHV conditions. Subsequently,
annealing at 350 K for 2 h was carried out. NiO(001) crystals
(Surfacenet) were prepared by annealing at 870 K until a low
pressure (1072 mbar) was reached, followed by the cleavage
under UHV conditions and a second annealing at 770 K for 1 h.
In all cases, atomically flat surfaces with large terraces separat-
ed by atomic steps were obtained.

Room-temperature AFM

Room-temperature nc-AFM measurements were performed

with a custom-built non-contact atomic force microscope
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with Nanonis electronics RC5. PPP-NCL cantilevers
(Nanosensor) were used as sensor (typical resonance frequency
of fi = 170 kHz, oscillation amplitude A; = 2-5 nm, and
f> =1 MHz, Ay = 400-800 pm. Their preparation consisted of
annealing for 1 h at 400 K followed by tip Ar* sputtering for
90 s at 680 eV at an Ar* pressure of 3 x 107 mbar. The base
pressure of the UHV system during AFM measurements is
maintained at 2 x 107!! mbar.

Electrospray deposition

Electrospray deposition was performed on samples kept at room
temperature using a commercial system from MolecularSpray
[49]. The setup, shown in Figure 1a, is connected to the prepa-
ration chamber of the system. It is based on a straight-line
succession of three chambers as represented in Figure 1b. When
connected, the vacuum level of the sample chamber is
1 x 107 mbar. The Cgy molecules were dissolved in a toluene/
methanol mixture (ratio 5:1 in volume). During spray deposi-
tion the pressure rose up to 1 x 107 mbar. The typically applied
voltage was 1.2 kV with occasional necessary adjustments
during spray deposition to maintain stable conditions. Deposi-

tion times were typically around 10 min.

Thermal evaporation

Ceo was evaporated from a quartz crucible in a Kentax evapo-
rator onto samples kept at room temperature. Evaporation was
calibrated using a quartz microbalance and was performed at
410 °C for 3 min.

Supporting Information

Supporting Information features additional images of the
influence of HV-ESD on surfaces and assembly formation.
Part 1 describes the Au(111) surface with a significant
presence of solvent. Part 2 presents a comparison between
HV-ESD and TE for the Ag(111) surface. Part 3 shows
defect formation after HV-ESD on a KBr surface.

Supporting Information File 1

Additional experimental data
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-12-45-S1.pdf]
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