2,660 research outputs found

    Neither dust nor black carbon causing apparent albedo decline in Greenland\u27s dry snow zone: Implications for MODIS C5 surface reflectance

    Get PDF
    Remote sensing observations suggest Greenland ice sheet (GrIS) albedo has declined since 2001, even in the dry snow zone. We seek to explain the apparent dry snow albedo decline. We analyze samples representing 2012–2014 snowfall across NW Greenland for black carbon and dust light-absorbing impurities (LAI) and model their impacts on snow albedo. Albedo reductions due to LAI are small, averaging 0.003, with episodic enhancements resulting in reductions of 0.01–0.02. No significant increase in black carbon or dust concentrations relative to recent decades is found. Enhanced deposition of LAI is not, therefore, causing significant dry snow albedo reduction or driving melt events. Analysis of Collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data indicates that the decline and spectral shift in dry snow albedo contains important contributions from uncorrected Terra sensor degradation. Though discrepancies are mostly below the stated accuracy of MODIS products, they will require revisiting some prior conclusions with C6 data

    Ischemic preconditioning attenuates portal venous plasma concentrations of purines following warm liver ischemia in man

    Get PDF
    Background/Aims: Degradation of adenine nucleotides to adenosine has been suggested to play a critical role in ischemic preconditioning (IPC). Thus, we questioned in patients undergoing partial hepatectomy whether (i) IPC will increase plasma purine catabolites and whether (ii) formation of purines in response to vascular clamping (Pringle maneuver) can be attenuated by prior IPC. Methods: 75 patients were randomly assigned to three groups: group I underwent hepatectomy without vascular clamping; group II was subjected to the Pringle maneuver during resection, and group III was preconditioned (10 min ischemia and 10 min reperfusion) prior to the Pringle maneuver for resection. Central, portal venous and arterial plasma concentrations of adenosine, inosine, hypoxanthine and xanthine were determined by high-performance liquid chromatography. Results: Duration of the Pringle maneuver did not differ between patients with or without IPC. Surgery without vascular clamping had only a minor effect on plasma purine transiently increased. After the Pringle maneuver alone, purine plasma concentrations were most increased. This strong rise in plasma purines caused by the Pringle maneuver, however, was significantly attenuated by IPC. When portal venous minus arterial concentration difference was calculated for inosine or hypoxanthine, the respective differences became positive in patients subjected to the Pringle maneuver and were completely prevented by preconditioning. Conclusion: These data demonstrate that (i) IPC increases formation of adenosine, and that (ii) the unwanted degradation of adenine nucleotides to purines caused by the Pringle maneuver can be attenuated by IPC. Because IPC also induces a decrease of portal venous minus arterial purine plasma concentration differences, IPC might possibly decrease disturbances in the energy metabolism in the intestine as well. Copyright (C) 2005 S. Karger AG, Basel

    The Los Alamos Trapped Ion Quantum Computer Experiment

    Get PDF
    The development and theory of an experiment to investigate quantum computation with trapped calcium ions is described. The ion trap, laser and ion requirements are determined, and the parameters required for quantum logic operations as well as simple quantum factoring are described.Comment: 41 pages, 16 figures, submitted to Fortschritte der Physi

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil

    Observation of power-law scaling for phase transitions in linear trapped ion crystals

    Full text link
    We report an experimental confirmation of the power-law relationship between the critical anisotropy parameter and ion number for the linear-to-zigzag phase transition in an ionic crystal. Our experiment uses laser cooled calcium ions confined in a linear radio-frequency trap. Measurements for up to 10 ions are in good agreement with theoretical and numeric predictions. Implications on an upper limit to the size of data registers in ion trap quantum computers are discussed.Comment: Physical Review Letters in press, 4 pages, 4 figure

    Modeling the Atmospheric Concentrations of Individual Gas-Phase and Particle-Phase Organic Compounds

    Get PDF
    An Eulerian photochemical airshed model is adapted to track the concentrations of individual vapor-phase, semivolatile, and particle-phase compounds over the carbon number range from C_1 to C_(34). The model incorporates primary emissions of organic gases and particles from sources based on recent source tests. These emissions are processed through a photochemical airshed model whose chemical mechanism has been expanded to explicitly follow the reaction or formation of 125 individual vapor-phase organic compounds plus 11 lumped vapor-phase compound groups. Primary organic compounds in the particle phase can be disaggregated at will from a lumped primary organic compound mass category; in the present model application, 31 individual primary particulate organic compounds are tracked as they are transported from sources to receptor air monitoring sites. The model is applied to study air quality relationships for organics in California's South Coast Air Basin that surrounds Los Angeles during the severe photochemical smog episode that occurred on September 8−9, 1993. The ambient concentra tions of all normal alkanes and most aromatic hydrocarbons are predicted within the correct order of magnitude over 6 orders of magnitude concentration change from most abundant gas phase to least abundant particulate species studied. A formal evaluation of model performance shows that, with the exception of a few outliers, the concentrations of over 100 organic compounds studied were reproduced with an average absolute bias of ±47% and with roughly equal numbers of compounds underpredicted (58) versus overpredicted (46). The time series of observed aromatic hydrocarbons concentrations are reproduced closely, production of methylglyoxal from aromatic precursors is tracked, and the predicted olefinic hydrocarbon concentrations decline dramatically in concentration due to chemical reaction and dilution during downwind transport as is observed in the ambient monitoring database. This ability to simultaneously account for the concentrations of individual gas-phase and particulate organic compounds lays a foundation for future calculations of secondary organic aerosol formation and gas/particle repartitioning in the atmosphere

    A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign

    Get PDF
    The Sulfur Transport and dEposition Model (STEM) is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), conducted over the eastern Pacific Ocean during spring 2006. Predicted trace gas and aerosol distributions over the Pacific are presented and discussed in terms of transport and source region contributions. Trace species distributions show a strong west (high) to east (low) gradient, with the bulk of the pollutant transport over the central Pacific occurring between similar to 20 degrees N and 50 degrees N in the 2-6 km altitude range. These distributions are evaluated in the eastern Pacific by comparison with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from the Mt. Bachelor (MBO) surface site. Thirty different meteorological, trace gas and aerosol parameters are compared. In general the meteorological fields are better predicted than gas phase species, which in turn are better predicted than aerosol quantities. PAN is found to be significantly overpredicted over the eastern Pacific, which is attributed to uncertainties in the chemical reaction mechanisms used in current atmospheric chemistry models in general and to the specifically high PAN production in the SAPRC-99 mechanism used in the regional model. A systematic underprediction of the elevated sulfate layer in the eastern Pacific observed by the C-130 is another issue that is identified and discussed. Results from source region tagged CO simulations are used to estimate how the different source regions around the Pacific contribute to the trace gas species distributions. During this period the largest contributions were from China and from fires in South/Southeast and North Asia. For the C-130 flights, which operated off the coast of the Northwest US, the regional CO contributions range as follows: China (35%), South/Southeast Asia fires (35%), North America anthropogenic (20%), and North Asia fires (10%). The transport of pollution into the western US is studied at MBO and a variety of events with elevated Asian dust, and periods with contributions from China and fires from both Asia and North America are discussed. The role of heterogeneous chemistry on the composition over the eastern Pacific is also studied. The impacts of heterogeneous reactions at specific times can be significant, increasing sulfate and nitrate aerosol production and reducing gas phase nitric acid levels appreciably (~50%)

    Nitrogen chemistry and depletion in starless cores

    Full text link
    We investigated the chemistry of nitrogen--containing species, principally isotopomers of CN, HCN, and HNC, in a sample of pre-protostellar cores. We used the IRAM 30 m telescope to measure the emission in rotational and hyperfine transitions of CN, HCN, 13CN, H13CN, HN13C, and HC15N, in L 1544, L 183, Oph D, L 1517B, L 310. The observations were made along axial cuts through the dust emission peak, at a number of regularly--spaced offset positions. The observations were reduced and analyzed to obtain the column densities, using the measurements of the less abundant isotopic variants in order to minimize the consequences of finite optical depths in the lines. The observations were compared with the predictions of a free--fall gravitational collapse model, which incorporates a non-equilibrium treatment of the relevant chemistry. We found that CN, HCN, and HNC remain present in the gas phase at densities well above that at which CO depletes on to grains. The CN:HCN and the HNC:HCN abundance ratios are larger than unity in all the objects of our sample. Furthermore, there is no observational evidence for large variations of these ratios with increasing offset from the dust emission peak and hence with density. Whilst the differential freeze--out of CN and CO can be understood in terms of the current chemistry, the behaviour of the CN:HCN ratio is more difficult to explain. Models suggest that most nitrogen is not in the gas phase but may be locked in ices. Unambiguous conclusions require measurements of the rate coefficients of the key neutral--neutral reactions at low temperatures
    corecore