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Neither dust nor black carbon causing apparent albedo
decline in Greenland’s dry snow zone: Implications
for MODIS C5 surface reflectance
Chris M. Polashenski1,2, Jack E. Dibb3, Mark G. Flanner4, Justin Y. Chen5, Zoe R. Courville1,2,
Alexandra M. Lai6, James J. Schauer6, Martin M. Shafer6, and Mike Bergin7

1USACE-CRREL, Ft. Wainwright, Alaska, USA, 2Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire,
USA, 3Earth Systems Research Center, EOS, University of New Hampshire, Durham, New Hampshire, USA, 4Department of
Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA, 5Hanover High School,
Hanover, New Hampshire, USA, 6Environmental Chemistry and Technology Program, University of Wisconsin-Madison,
Madison, Wisconsin, USA, 7Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA

Abstract Remote sensing observations suggest Greenland ice sheet (GrIS) albedo has declined since 2001,
even in the dry snow zone. We seek to explain the apparent dry snow albedo decline. We analyze samples
representing 2012–2014 snowfall across NW Greenland for black carbon and dust light-absorbing impurities (LAI)
and model their impacts on snow albedo. Albedo reductions due to LAI are small, averaging 0.003, with episodic
enhancements resulting in reductions of 0.01–0.02. No significant increase in black carbon or dust concentrations
relative to recent decades is found. Enhanced deposition of LAI is not, therefore, causing significant dry snow
albedo reduction or drivingmelt events. Analysis of Collection 5 Moderate Resolution Imaging Spectroradiometer
(MODIS) surface reflectance data indicates that the decline and spectral shift in dry snow albedo contains
important contributions from uncorrected Terra sensor degradation. Though discrepancies are mostly below the
stated accuracy of MODIS products, they will require revisiting some prior conclusions with C6 data.

1. Introduction

Observations indicate that average summer albedo of the Greenland ice sheet (GrIS) has been declining [Stroeve
et al., 2013;He et al., 2013; Box et al., 2012]. The resulting changes to the energy balance of the GrIS are leading to
increased surface mass losses and sea level rise [Van Angelen et al., 2012; Box et al., 2012; Tedesco et al., 2011].
The albedo decline ismost pronounced around the periphery of the GrIS wheremelt duration is increasing, dirty
ice surfaces are increasingly exposed, and impurities are melt accumulated at the surface. Modest long-term
summer albedo declines (0.01–0.04/decade) have also been found, however, in Moderate Resolution Imaging
Spectroradiometer (MODIS) observations of the dry snow zone [Dumont et al., 2014; He et al., 2013; Stroeve
et al., 2013 p. 213; Box et al., 2012]. These reductions in dry snow albedo occur even near the ice sheet summit
where melt is rarely a factor and snow albedo is effectively reset each winter by new snowfall. Though
the albedo trends are mostly of magnitude comparable to or below the stated accuracy of MODIS
MOD/MYD09A1 and MCD43A3 surface reflectance products (0.05) [Vermote and Kotchenova, 2011; Vermote
and Saleous, 2006;Wang et al., 2012; Schaaf, personal communication], they are of magnitude sufficient to have
large implications for GrIS energy balance and are consistent, statistically significant, and largely agree in sign
with ground station observations [Box et al., 2012]. Therefore, these observations suggest an interannual trend
in one or more of the mechanisms controlling dry snow albedo, leading several authors to discuss the trends
and speculate on their causes [e.g., Dumont et al., 2014; Stroeve et al., 2013 p. 211; Tedesco et al., 2011].

Two properties dominate albedo in dry snow: (1) snow grain size (technically specific surface area) and (2) the
presence of light-absorbing impurities (LAI), typically dominated by black carbon (BC) andmineral dust [Warren
and Wiscombe, 1980; Wiscombe and Warren, 1980]. A trend in one or more of these properties appears neces-
sary to explain the observed dry snow albedo decline. All have been discussed and supported in recent litera-
ture. Remote sensing and modeling evidence suggests that enhanced mineral dust transport to the GrIS may
be playing a role in GrIS darkening since 2009.Dumont et al. [2014] demonstrate a red shift in MODIS reflectivity
which would be consistent with enhanced dust concentrations. Keegan et al. [2014] suggest enhanced BC
concentrations significantly contributed to an albedo feedback that triggered the widespread 2012 melt.
Snow high on the GrIS typically has concentrations of BC too low to induce a significant albedo effect
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[Doherty et al., 2010; Hagler et al., 2007a, 2007b], but above average spring fire activity in Canada and Siberia
[Giglio et al., 2013] and favorable atmospheric transport [Häkkinen et al., 2014; Fettweis et al., 2013] could have
combined to cause exceptional BC deposition. Low-albedo anomalies in years with widespread melt events
have been linked to snow grain growth and surface melt [Tedesco et al., 2011]. Ongoing surface temperature
increases [Hall et al., 2013; McGrath et al., 2013] would be expected to enhance grain metamorphosis.

In this study, we constrain the impact of LAI on GrIS albedo through direct measurement of their concentra-
tions in snow over a wide area of the GrIS andmodel their impact on albedo. Comparing concentrations from
2012 to 2014 with historic concentrations places them in context. Finding that LAI cannot account for the
observed albedo declines, we discuss the potential for grain size effects or MODIS sensor degradation to
account for the observed change.

2. Methods

We examined and sampled the upper snow stratigraphy in the northwest sector of the GrIS during two
traverses, conducted 1 May to 5 June 2013 and 8–30 April 2014 (see map, Figure S1 in the supporting
information). A total of 67 snow pits were sampled at 3 cm depth resolution to characterize the deposition
of LAI and snow microphysics over the prior 1–2 annual cycles. Dust and black carbon absorption was then
modeled in the Snow, Ice, and Aerosol Radiation Model (SNICAR) [Flanner et al., 2007] to derive the albedo
impact of observed LAI concentrations. Our methods for sample collection, processing, and analysis are
described in the supporting information.

3. Results
3.1. Concentrations of Light-Absorbing Impurities

Concentrations of black carbon (BC) and water soluble Ca+2 concentrations measured from snowpit samples
are presented in Figure 1. A seasonal dependence in deposition is evident; mineral dust tracer Ca+2 concen-
trations peak in early spring (~April), and black carbon concentrations peak in summer (~June–August).
Average BC and Ca+2 concentrations for a full annual cycle (May 2013–2014) are 2.6 ng/g and 13.7 ng/g,
respectively, using the 23 sites where continuous samples were collected. Peak BC concentrations, typically
found in June–August deposited layers, are 1.1–17.4 ng/g in summer 2012 and 2.8–43 ng/g in summer
2013, with an average peak of 4.0 ng/g during 2012 and 15 ng/g during 2013. The range of peak Ca+2 concen-
trations, typically found in March–May deposited layers, is 32–99 ng/g in spring 2013 and 7.4–290 ng/g in
spring 2014 with an average peak of 49.5 ng/g during spring 2013, and 82 ng/g during spring 2014. BC
concentrations above 3 ng/g are closely correlated with tracers that indicate a biomass burning source, such
as NH4 (Figure S2). BC concentrations show regional dependence with slightly enhanced BC deposition over
central Greenland in summer 2012 and strongly enhanced BC deposition in our study area during summer
2013. Ca+2 concentrations are highest in samples collected near the periphery of the GrIS (below 1500m
elevation). This could potentially indicate some local dust sourcing, but is predominantly due to significant
contributions of sea salt Ca+2 (ssCa+2), that is removed before albedo impact analysis below.

3.2. Albedo Impact of Light-Absorbing Impurities

The albedo impact of observed impurity concentrations (relative to pure snow) is modeled and plotted
in Figure 2 (see supporting information Text S3). We find albedo impacts of dust and BC are typically low.
Average total albedo reduction is 0.0031 (0.0026–0.0035) in the central (low-high) scenarios of dust absorp-
tivity. Albedo reduction, relative to pure snow, is less than 0.005 in 90% (83–92%) and less than 0.01 in 97.6%
(96.5%–98%) of samples. In isolation, the albedo reduction attributed to dust averages 0.0009 and only rarely
exceeds 0.005 (0.6% of samples), while BC impacts average 0.0016 with 5 times as many (3.3%) of samples
indicating impact over 0.005. On average, therefore, LAI concentrations are roughly an order of magnitude
too low to be the leading factor in MODIS-observed 0.01–0.04/decade dry snow albedo reduction noted
by Dumont et al. [2014], Stroeve et al. [2013], He et al. [2013], and Box et al. [2012].

The few samples indicating high BC impact were mostly contained in a summer 2013 stratigraphic layer
where BC was sufficient to reduce albedo by 0.01–0.02. Stratigraphic records and snow accumulation sensors
on weather stations, however, show that the timing of this particular layer’s deposition (well after peak
annual insolation) and its subsequent burial (within several days) limited impact on surface energy balance.

Geophysical Research Letters 10.1002/2015GL065912
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Snow rich in BC fell primarily in an 8–9 August 2013 storm and was buried in subsequent storms on 11–13
and 28–30 August 2013. A similar layer deposited in spring or early summer and left unburied, however,
could have significant impacts on annual energy balance and progression of melt.

4. Discussion
4.1. Comparison to Historical Observations of Impurities

The LAI-caused albedo impacts, calculated relative to pure snow, are small. We compare our measurements
of LAI to prior studies of BC and dust in order to evaluate whether the impurity concentrations we observe are
trending upward relative to historical averages. We also compare the makeup of these impurities to earlier

Figure 1. BC and Ca+2 concentrations from samples collected in (a, b) 2013 and (c, d) 2014. Depth (y axis) is plotted as a
percentage of the accumulation since the prior summer melt/hoar layer; 100% corresponds to the depth of the prior
mid-July–early August, and 0% is surface on the date of sampling in April/May. The previous April/May, 1 year prior to
sampling, is near 130%. Grey indicates incomplete data. Peak Ca+2 occurs each spring, while peak BC occurs in summer.

Geophysical Research Letters 10.1002/2015GL065912
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studies to evaluate whether their composition has changed in a manner that would increase their absorptivity
independent of changes in concentration. The best indications are that neither the quantity nor mineralogical
makeup of LAI deposited on the GrIS has undergone significant optically relevant change from long-term
averages in the past several years.

Black carbon observations, both in contemporary snows and ice core records, indicate stable or slightly declin-
ing BC concentrations on the GrIS of similar magnitude to our observations. A review of available observations
(see supporting information Text S4.1) shows that BC concentrations high on the GrIS have been relatively
stable since the 1950s, with annual averages typically in the 1.5–3ng/g range, and episodic events depositing
5–10+ng/g a few times a decade at a given site. Our observation of a mean 2013–2014 BC of 2.6ng/g, with a
mean peak of 15 ng/g, therefore, is consistent with historical estimates. Our observations in 2012–2013 do not
capture a full annual cycle but do contain the 2012 summer peak concentrations (average peak, 4 ng/g), also
indicating no significant departure from long-term norms, even in this year of record melt.

Figure 2. Modeled central scenario albedo reduction by (a) dust, (b) BC, and (c) combined dust and BC relative to pure
snow for impurity observations collected in 2013; same for (d) dust, (e) BC, and (f) combined dust and BC for 2014 obser-
vations. As in Figure 1, depths are % of the accumulation since the prior summer melt or hoar layer.

Geophysical Research Letters 10.1002/2015GL065912
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A wealth of prior observations is also available on dust and dust tracers, particularly on total elemental
calcium (here referred to as Ca) and water soluble, typically IC-determined calcium (here Ca+2)
(see supporting information Text S4.2). Contemporary snow studies show a range in annual average concen-
trations from 5.3 to 14 ng/g Ca+2 at sites across the GrIS since 1950, similar to the longer-term stable range of
5.4–16ng/g throughout Holocene ice core records. These ranges nicely bracket our 9.6 ng/g 2013–2014 inter-
ior GrIS annual average, again indicating we observed nothing trending out of normal variability ranges. Prior
observations also show a clear seasonal signal with peak Ca+2 concentrations averaging 23–40ng/g, slightly
less than our 2014 spring mean peak (46.9 ng/g) but still comparable. Considering total dust rather than Ca+2

tracers, we use elemental analysis and a mineralogical mixing model (see supporting information Text S2 and
S4.2) to show that our observations indicate a mean interior GrIS dust concentration of 33–45ng/g, closely
matching dust concentrations observed in contemporary snow (45ng/g) [Bory et al., 2002] and from core
records collected at the GRIP site throughout the Holocene (33–53ng/g) [Steffensen, 1997].

Finally, it appears that the optically relevant part of the mineralogical composition of the dust has remained
stable. Average (median) observed concentrations of Fe, an indicator for the most absorptive parts of the
dust mineralogy, were 10.6 (6.1) ng/g. The subset of our samples analyzed for metals overweights the high
dust deposition (spring) layers, so we expect this to be somewhat high relative to full-year observations.
With this in mind, our Fe concentration compares well with earlier observations, which mostly fall into
the range of 1–10 ng/g (see supporting information Text S4.2). Similarly, the central estimate of hematite
mass fraction in our measurements (5.6%) is consistent with the stable Fe2O3 fraction seen since prior to
the last glacial maximum (7.0%, [Laj et al., 1997]; 5.0% [Lanci et al., 2004]).

The conclusion that our observations show no significant changes in dust composition is not surprising.
A significant body of prior work points to stable composition and long-term sourcing of GrIS-deposited dust
from East Asia, specifically the Taklamakan desert, for the majority of the dust reaching Greenland [Biscaye
et al., 1997; Bory et al., 2002, 2003a, 2003b; Grousset and Biscaye, 2005; Kahl et al., 1997], interrupted only
by isolated events [Donarummo et al., 2003; Dibb et al., 2007]. Others have shown similar mineralogical
composition of deposited dust in samples of contemporary snow and seventeenth century core segments
[Drab et al., 2002; Bory et al., 2003b].

4.2. Other Mechanisms for Albedo Change

At least two physical mechanisms for dry snow albedo reduction remain: grain size growth [Wiscombe and
Warren, 1980] and, potentially, algae and/or microbial growth [Benning et al., 2014].

Snow grain size can cause direct reductions in albedo (mostly in the near-infrared) and indirect effects by enhan-
cing the visible albedo reduction caused by LAI. It is also possible, though conjectural, that dust, BC, or ion
concentrations might also alter the rates of grain metamorphosis to compound the albedo impact of an
enhancement of a particular moiety [e.g.,Hörhold et al., 2012]. A decline in albedo from grain size changes during
the MODIS record seems likely. Metamorphism rates increase with rising temperature, and trends of +1.35
±0.47C/decade are observed on the GrIS during the MODIS record [Hall et al., 2013; McGrath et al., 2013].
Increases in grain size have also been implicated in episodic events [Tedesco et al., 2011]. Contradicting these
expectations, however, the spectral character of MODIS albedo decline (discussed below) is not consistent with
a significant change in grain size. Negative feedbacks such as increased snowfall, expected with warmer
temperatures, could counterbalance enhanced metamorphosis by increased burial rates [Box et al., 2013].

We have no observations of snow algae or microbial content but rule out significant albedo contribution in
the dry snow zone based on studies of growth habits and the lack of seasonality in MODIS-observed albedo
declines. Most biota require melting snow and air temperatures near or above 0°C for extended times for sig-
nificant growth [Hoham, 1975; Ling and Seppelt, 1993]. Mean dry snow zone temperatures are well below 0°C
even in midsummer, and albedo declines observed in the MODIS record occur even during the early spring
[Dumont et al., 2014, Figure 1] when surface temperatures are particularly inhospitable.

4.3. Reconciling Our Evidence With Observed MODIS Albedo Declines

The remaining hypothesis is that the spectral trends in MODIS-observed albedo are not physically real.
Because the trends are mostly below the stated accuracy (0.05) of the MODIS surface reflectance products,
this is not unlikely nor would it discredit the MODIS products. The fact that the trends are statistically
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significant and discussed in high profile GrIS literature [Dumont et al., 2014; Stroeve et al., 2013; He et al., 2013;
Box et al., 2012], however, demands we investigate more closely. We examine in particular the possible role of
uncorrected sensor degradation in Collection 5 (C5) MODIS data and demonstrate inconsistencies between
the Terra and Aqua sensors which indicate its importance.

Average summer albedo (15 May to 15 July) is plotted for the GrIS dry snow zone using C5 MODIS data sets
(Figure 3). An independent passive microwave melt mask [Tedesco et al., 2011], elevation cutoff, and quality flag
filtering ensurewe strictly consider dry snow albedo changes and utilize only the best available data (seemethods,
supporting information Text S5). As expected from prior work [e.g., Dumont et al., 2014], the MCD43A3 surface
reflectance product shows declines in bands 1–4 albedo (Figure 3d), with little change in band 5 albedo, a spectral
signature indicative of increases in dust and unchanged grain size. Followingmethods of Dumont et al. [2014], we
calculate a spectrally derived impurity index from MCD43A3 data (Figure 3e, red line). Modeling carried out by
Dumont et al. [2014, Figure S4] indicates that an increase of ~3000ng/g dust along with ~5ng/g BC would
be required to create an impurity index shift of this magnitude. Highlighting the discrepancy which must be
resolved, our in situ observations indicate only 33–45ng/g (mean) dust, with no indication of significant trends.

Analysis of MODIS sensor degradation by Lyapustin et al. [2014] suggests that C5 data show systemic tem-
poral trends in MODIS bands 1–7, which cover parts of the visible and NIR spectrum. Degradation is primarily
on the Terra sensor, largest in the blue band (band 3), and decreases with wavelength. We plot GrIS dry snow
zone albedo from the two MODIS sensors separately (Figures 3a–3c) to check for such trends. The result
matches the pattern of uncorrected degradation presented by Lyapustin et al. [2014] and provides support
for a hypothesis that uncorrected differential sensor degradation controls much of the observed trends.
Terra (MOD10A1) shows a trend toward declining broadband albedo (�0.03/decade), while Aqua
(MYD10A1) shows no significant trend (Figure 3a). The spectral reflectance bands 1–4 (red, NIR, blue, and
green, respectively) show large declines (0.03–0.07/decade) for Terra (MOD09A1) (Figure 3b) but stable
reflectance (�0.005 to +0.001/decade) for Aqua (MYD09A1) (Figure 3c). Neither exhibits a significant trend
in band 5 (1230–1250 nm) albedo, a wavelength sensitive to changes in snow grains. The spectral differences
result in near-zero trend in impurity index for Aqua and strongly positive trend for Terra (Figure 3e). Aqua’s
near-zero trend in dry snow albedo (Figures 3a and 3c) is consistent with our SNICAR calculations showing
extremely small impacts on albedo from LAI.

MCD43A3, a more sophisticated surface reflectance product made using a full BRDF (Bidirectional Reflectance
Distribution Function) inversion from multiple high-quality observations from both sensors (Figure 3d), also
shows trends that fall between Aqua’s stability and Terra’s steep declines. Ideally, we would process separate

Figure 3. Average 15 May to 15 July MODIS surface reflectance, dry snow zone of the Greenland Ice Sheet (a) broadband
albedo from MOD/MYD10A1. (b–d) Spectral bands 1–4 (left y axis) and 5 (right) for MOD09A1, MYD09A1, and MCD43A3
products, and (e) impurity index calculated from data in Figures 3b–3d.
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Terra and Aqua products from this data set as well, however, these data sets are not routinely produced or pub-
licly available and producing them offline is problematic. The BRDF algorithm requires multiple angular obser-
vations for a full high-quality inversion, which are frequently unavailable within a 16day window from only one
sensor. Wewere able to examine separately processedMCD43A3 data at a test pixel in the dry snow zone, thanks
to the generous help of members of the MODIS team (C. Schaaf and Q. Sun, personal communication, 2015). As
expected, only a small fraction of high-quality retrievals were possible. The data showed a similar pattern of
sensor-sensor discrepancy: declining albedo trends in Terra data and a lack of trends in Aqua, with the larger
differences in shorter wavelength bands. The discrepancy between the sensors was, however, smaller than in
the MOD/MYD09A1 data. Differences in trends were <0.035/decade, and absolute differences between sensors
weremostly<0.025. Though smaller, these observed differences, combinedwith strong similarity between com-
bined MOD/MYD09A1 trends and the full BRDF inversion product in MCD43A3 (Figure S3), lead us to conclude
that the MCD43A3 product trends are also influenced substantially by the Terra degradation.

We considered the possibility that the Terra-Aqua discrepancy could be caused by environmental conditions
instead. We rejected the possibility that different overpass times or loss in effectiveness of Aqua’s cloud filter
due to channel 6 failure might be the cause of the discrepancy in trends between the sensors. Terra and Aqua
have daytime overpass times at 77N, 55W (near the center of our 2014 sites) of approximately 1300 and 1100
local solar time, respectively. These overpasses offer roughly equal solar zenith angle (SZA) and only a modest
potential for diurnal variation in atmosphere properties. More importantly, differences caused by SZA or
clouds would have the strongest impact in the NIR part of the spectrum, where our analysis shows good sensor
agreement and almost no albedo trend.

We acknowledge that prior work has discussed the potential impacts of MODIS sensor degradation on GrIS
albedo observations or evaluated MODIS trends against in situ data [e.g., Stroeve et al., 2013; Dumont et al.,
2014; Box et al., 2012] and concluded that the impact of Terra degradation is insignificant. Stroeve et al.
[2013] used sensor-separated MOD/MYD43A3 products (calculated offline) in a small test area of northern
Greenland to show that broadband albedo trends appear the same with both sensors. We did not have
access to these data sets. Instead, we use spectral MOD/MYD09A1 products to show for a broader area,
and over greater time, that significant discrepancies between the two sensors exist.

Box et al. [2012] and Stroeve et al. [2013] show agreement between MODIS and in situ GC-Net albedo decline,
confirming a trend in ice sheet-wide albedo. We agree that these data are well correlated and indicate ice
sheet-wide albedo decline, but note that this is mostly due to increased melt. Applying our melt filter to
the GC-Net site locations excludes all but six sites (Humbolt, Summit, Tunu-N, NGRIP, NASA-E, and NEEM)
due to regular occurrence of melt. Evaluating average June–August albedo trends at the dry sites shows
three increasing and three declining, with a small, nonsignificant summer albedo trend of �0.007/decade
(Table S2). In contrast, MOD10A1 observations trend downward with statistically significant trends averaging
�0.036/decade [He et al., 2013]. Earlier in spring, more of the stations are in dry snow. A somewhat larger array
of sites (all six from above, plus CP1, DYE-2, Saddle, South Dome, and NASA-SE) can be examined in May while
still excluding melt. These show a negative trend of�0.015/decade, with approximately 75% of sites trending
downward (Box et al. [2012] and updated analysis through 2014) (J. Box personal communication, 2015). This
provides some evidence that part of the dry snow zone albedo decline could be real, perhaps due to grain size
effects. The GC-Net albedo trend, however, is still exceeded by the average MOD10A1 trends in May at this
larger array of sites (�0.031/decade).

Finally, Dumont et al. [2014] consider the possibility of sensor degradation by selecting an area of Antarctica as a
pseudoinvariant test case and, finding that MCD43A3 trends seen on the GrIS are absent there, conclude that the
GrIS trends are genuine. Exploring whether Antarctic albedo is indeed invariant is beyond our scope. Instead, we
point out that the spectral declines we observe in Greenland, particularly for Terra, are similar to those reported
for the NASA-selected pseudoinvariant desert calibration sites during the derivation of C6/6+ calibrations, and
that the desert sites are thoroughly evaluated for stability [e.g., Sun et al., 2014; Lyapustin et al., 2014].

5. Conclusions

We observe black carbon and dust tracer concentrations in the snow of NW Greenland during 2012–2014 which
are consistent with observations over the past 60 years (BC) and throughout the Holocene (dust tracers).
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Radiative transfer modeling shows that the direct impact of aerosol impurities on GrIS dry snow albedo is rela-
tively small (mean �0.0031), though episodic aerosol deposition events can reduce albedo by 0.01–0.02. While
the reduction is important for the energy balance of the GrIS and episodic deposition events could initiate sig-
nificant albedo feedbacks if timed correctly, we find no evidence that would support a hypothesis that observed
interannual to decadal trends in albedo are being caused by changes in the deposition of either class of LAI.

Examining the spectral signature of the dry snow zone albedo declines detected by MODIS satellites Aqua and
Terra separately, we find conflicting trends which appear indicative of uncorrected sensor degradation in C5
products. Albedo decline is generally indicated by Terra but not by Aqua. These discrepancies occur in both
MOD/MYD09A1 and MOD/MYD43A3 products, with larger discrepancies in MOD/MOD09A1 products. Though
the magnitude of the trends is mostly below the 0.05 stated accuracy of the MODIS products, they have pre-
viously been used to both indicate changing GrIS dry snow zone albedo and diagnose its cause, making their
discussion highly relevant [e.g., Dumont et al., 2014; Stroeve et al., 2013; Tedesco et al., 2011; Box et al., 2012].
After considering prior work on MODIS degradation and independent in situ albedo observations, we find the
most likely means to reconcile the lack of increasing trend in LAI deposition with the apparent declines in
MODIS visible band dry snow albedo is to attribute a significant fraction of the MODIS dry snow zone albedo
trend to uncorrected sensor degradation, primarily on Terra. This conclusion is further supported by analysis of
GC-Net data, which shows lower, nonsignificant trends in dry snow zone albedo than indicated in MODIS
products. We expect, therefore, that the corrections for degradation in C6 data will greatly reduce or remove
the MODIS trend in dry snow zone albedo. The same corrections would apply across other regions of the ice
sheet, impacting trends. While the discrepancies identified are not large enough to alter the conclusion that
overall ice sheet albedo is declining due to increased extent and duration of melt, the likely adjustment of
MODIS albedo trends by 0.01–0.03+ (depending on product and band) may have significant implications for
modeling efforts and broader reaching conclusions about ice sheet energy balance in a warming climate.
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