50 research outputs found

    Spectral signature of short attosecond pulse trains

    Full text link
    We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800nm laser field and a fraction (less than 10%) of its second harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to interferences between multiple pulses in the train. The position of these peaks varies with the CEO and their number is directly related to the number of pulses in the train. An analytical model, as well as numerical simulations, support our interpretation

    High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    Get PDF
    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008

    Seafood in Food Security: a call for bridging the terrestrial-aquatic divide

    Get PDF
    The contribution of seafood to global food security is being increasingly highlighted in policy. However, the extent to which such claims are supported in the current food security literature is unclear. This review assesses the extent to which seafood is represented in the recent food security literature, both individually and from a food systems perspective, in combination with terrestrially-based production systems. The results demonstrate that seafood remains under-researched compared to the role of terrestrial animal and plant production in food security. Furthermore, seafood and terrestrial production remain siloed, with very few papers addressing the combined contribution or relations between terrestrial and aquatic systems. We conclude that far more attention is needed to the specific and relative role of seafood in global food security and call for the integration of seafood in a wider interdisciplinary approach to global food system research

    Seafood in Food Security: A Call for Bridging the Terrestrial-Aquatic Divide

    Get PDF
    The contribution of seafood to global food security is being increasingly highlighted in policy. However, the extent to which such claims are supported in the current food security literature is unclear. This review assesses the extent to which seafood is represented in the recent food security literature, both individually and from a food systems perspective, in combination with terrestrially-based production systems. The results demonstrate that seafood remains under-researched compared to the role of terrestrial animal and plant production in food security. Furthermore, seafood and terrestrial production remain siloed, with very few papers addressing the combined contribution or relations between terrestrial and aquatic systems. We conclude that far more attention is needed to the specific and relative role of seafood in global food security and call for the integration of seafood in a wider interdisciplinary approach to global food system research

    Fluorescence imaging with two-photon evanescent wave excitation

    No full text

    Association between categories of developmental milestones and depressive symptoms in adolescence.

    Get PDF
    1<p>Adjusted for gender, age in months, SES and cycle (with the exception of gender in analyses stratified by gender).</p>2<p>Adjusted for gender, age in months, race, SES, family type, gestational age and cycle (with the exception of gender in analyses stratified by gender).</p>*<p>p<0.05.</p>**<p>p<0.01.</p>***<p>p<0.001.</p
    corecore