113 research outputs found

    Effect of iso-energetic exchange of dietary fat and starch on growth performance and body composition of broilers : Experiment 1

    Get PDF
    Dietary factors such as the concentrations of protein/amino acids, fat, and starch + sugar and their ratio, may affect the post-absorptive metabolism of energy and protein and energy deposition in the body. In a 2x2 factorial design, the effects of two dietary crude protein (high protein (HP) vs. low protein (LP) concentrations; 200/190 vs. 170/160 g/kg in grower and finisher phase) and two dietary fat/starch concentrations; (high fat (HF); fat and starch 105 and 340 g/kg, respectively) and (low fat (LF); fat and starch 65 and 420 g/kg, respectively) on growth performance and body composition of Ross 308 broilers were studied (9 to 35 d). From this experiment it can be concluded that dietary energy source and protein level in iso-energetic diets, balanced for first limiting essential amino acids, influence growth performance and body composition of broilers

    Measuring capital in active addiction and recovery: the development of the strengths and barriers recovery scale (SABRS).

    Get PDF
    BACKGROUND: The international Life In Recovery (LiR) surveys have provided an important message to the public and policy makers about the reality of change from addiction to recovery, consistently demonstrating both that there are marked gains across a range of life domains and that the longer the person is in recovery the better their recovery strengths and achievements. However, to date, no attempt has been made to quantify the Life In Recovery scales and to assess what levels of change in removing barriers and building strengths is achieved at which point in the recovery journey. METHODS: The current study undertakes a preliminary analysis of strengths and barriers from the Life in Recovery measure, using data from a European survey on drug users in recovery (n = 480), and suggests that the instrument can be edited into a Strengths And Barriers Recovery Scale (SABRS). The new scale provides a single score for both current recovery strengths and barriers to recovery. RESULTS: The resulting data analysis shows that there are stepwise incremental changes in recovery strengths at different recovery stages, but these occur with only very limited reductions in barriers to recovery, with even those in stable recovery typically having at least two barriers to their quality of life and wellbeing. Greater strengths in active addiction are associated with greater strengths and resources in recovery. CONCLUSION: As well as demonstrating population changes in each of the domains assessed, the current study has shown the potential of the Life In Recovery Scale as a measure of recovery capital that can be used to support recovery interventions and pathways

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (\u3c50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities

    Multiple Facets of Biodiversity Drive the Diversity-Stability Relationship

    Get PDF
    A significant body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we used data from 39 biodiversity experiments and structural equation modeling to investigate the roles of species richness, phylogenetic diversity, and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony. Contrary to our hypothesis, low phylogenetic diversity also enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our results demonstrate that biodiversity influences ecosystem stability via a variety of facets, thus highlighting a more multicausal relationship than has been previously acknowledged

    Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canad

    Global beta-diversity of angiosperm trees is shaped by Quaternary climate change

    Get PDF
    As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleo-climate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (rich-ness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta -di-versity in regions that experienced large temperature change, reflecting phylogenetically and functionally se-lective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide
    corecore