8 research outputs found

    Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens.

    Get PDF
    Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan-alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan-alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Antimicrobial and Anti-Inflammatory Activity of Chitosan–Alginate Nanoparticles: A Targeted Therapy for Cutaneous Pathogens

    No full text
    Advances in nanotechnology have demonstrated potential application of nanoparticles for effective and targeted drug delivery. Here, we investigated the antimicrobial and immunological properties and the feasibility of using nanoparticles to deliver antimicrobial agents to treat a cutaneous pathogen. Nanoparticles synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy imaging, chitosan-alginate nanoparticles were found to induce disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate nanoparticles also exhibited anti-inflammatory properties as they inhibited P. acnes induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide, a commonly used anti-acne drug, was effectively encapsulated in the chitosan-alginate nanoparticles and demonstrated superior antimicrobial activity against P. acnes compared to benzoyl peroxide alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate nanoparticle encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Forest fertilization research, 1957–1964

    No full text
    corecore