93 research outputs found

    Scalable and high-sensitivity readout of silicon quantum devices

    Get PDF
    Quantum computing is predicted to provide unprecedented enhancements in computational power. A quantum computer requires implementation of a well-defined and controlled quantum system of many interconnected qubits, each defined using fragile quantum states. The interest in a spin-based quantum computer in silicon stems from demonstrations of very long spin-coherence times, high-fidelity single spin control and compatibility with industrial mass-fabrication. Industrial scale fabrication of the silicon platform offers a clear route towards a large-scale quantum computer, however, some of the processes and techniques employed in qubit demonstrators are incompatible with a dense and foundry-fabricated architecture. In particular, spin-readout utilises external sensors that require nearly the same footprint as qubit devices. In this thesis, improved readout techniques for silicon quantum devices are presented and routes towards implementation of a scalable and high-sensitivity readout architecture are investigated. Firstly, readout sensitivity of compact gate-based sensors is improved using a high-quality factor resonator and Josephson parametric amplifier that are fabricated separately from quantum dots. Secondly, an integrated transistor-based control circuit is presented using which sequential readout of two quantum dot devices using the same gate-based sensor is achieved. Finally, a large-scale readout architecture based on random-access and frequency multiplexing is introduced. The impact of readout circuit footprint on readout sensitivity is determined, showing routes towards integration of conventional circuits with quantum devices in a dense architecture, and a fault-tolerant architecture based on mediated exchange is introduced, capable of relaxing the limitations on available control circuit footprint per qubit. Demonstrations are based on foundry-fabricated transistors and few-electron quantum dots, showing that industry fabrication is a viable route towards quantum computation at a scale large enough to begin addressing the most challenging computational problems

    A Silicon Surface Code Architecture Resilient Against Leakage Errors

    Get PDF
    Spin qubits in silicon quantum dots are one of the most promising building blocks for large scale quantum computers thanks to their high qubit density and compatibility with the existing semiconductor technologies. High fidelity single-qubit gates exceeding the threshold of error correction codes like the surface code have been demonstrated, while two-qubit gates have reached 98\% fidelity and are improving rapidly. However, there are other types of error --- such as charge leakage and propagation --- that may occur in quantum dot arrays and which cannot be corrected by quantum error correction codes, making them potentially damaging even when their probability is small. We propose a surface code architecture for silicon quantum dot spin qubits that is robust against leakage errors by incorporating multi-electron mediator dots. Charge leakage in the qubit dots is transferred to the mediator dots via charge relaxation processes and then removed using charge reservoirs attached to the mediators. A stabiliser-check cycle, optimised for our hardware, then removes the correlations between the residual physical errors. Through simulations we obtain the surface code threshold for the charge leakage errors and show that in our architecture the damage due to charge leakage errors is reduced to a similar level to that of the usual depolarising gate noise. Spin leakage errors in our architecture are constrained to only ancilla qubits and can be removed during quantum error correction via reinitialisations of ancillae, which ensure the robustness of our architecture against spin leakage as well. Our use of an elongated mediator dots creates spaces throughout the quantum dot array for charge reservoirs, measuring devices and control gates, providing the scalability in the design

    Psychological Balance in High Level Athletes: Gender-Based Differences and Sport-Specific Patterns

    Get PDF
    OBJECTIVES: Few epidemiological studies have focused on the psychological health of high level athletes. This study aimed to identify the principal psychological problems encountered within French high level athletes, and the variations in their prevalence based on sex and the sport practiced. METHODS: Multivariate analyses were conducted on nationwide data obtained from the athletes' yearly psychological evaluations. RESULTS: A representative sample of 13% of the French athlete population was obtained. 17% of athletes have at least one ongoing or recent disorder, generalized anxiety disorder (GAD) being the most prevalent (6%), followed by non-specific eating disorders (4.2%). Overall, 20.2% of women had at least one psychopathology, against 15.1% in men. This female predominance applied to anxiety and eating disorders, depression, sleep problems and self-harming behaviors. The highest rates of GAD appeared in aesthetic sports (16.7% vs. 6.8% in other sports for men and 38.9% vs. 10.3% for women); the lowest prevalence was found in high risk sports athletes (3.0% vs. 3.5%). Eating disorders are most common among women in racing sports (14% vs. 9%), but for men were found mostly in combat sports (7% vs. 4.8%). DISCUSSION: This study highlights important differences in psychopathology between male and female athletes, demonstrating that the many sex-based differences reported in the general population apply to elite athletes. While the prevalence of psychological problems is no higher than in the general population, the variations in psychopathology in different sports suggest that specific constraints could influence the development of some disorders

    Dispersive readout of reconfigurable ambipolar quantum dots in a silicon-on-insulator nanowire

    Get PDF
    We report on ambipolar gate-defined quantum dots in silicon on insulator (SOI) nanowires fabricated using a customised complementary metal-oxide-semiconductor (CMOS) process. The ambipolarity was achieved by extending a gate over an intrinsic silicon channel to both highly doped n-type and p-type terminals. We utilise the ability to supply ambipolar carrier reservoirs to the silicon channel to demonstrate an ability to reconfigurably define, with the same electrodes, double quantum dots with either holes or electrons. We use gate-based reflectometry to sense the inter-dot charge transition(IDT) of both electron and hole double quantum dots, achieving a minimum integration time of 160(100) ΞΌ\mus for electrons (holes). Our results present the opportunity to combine, in a single device, the long coherence times of electron spins with the electrically controllable holes spins in silicon.Comment: 5 pages, 4 figure

    A CMOS dynamic random access architecture for radio-frequency readout of quantum devices

    Get PDF
    As quantum processors become more complex, they will require efficient interfaces to deliver signals for control and readout while keeping the number of inputs manageable. Complementary metal–oxide–semiconductor (CMOS) electronics offers established solutions to signal routing and dynamic access, and the use of a CMOS platform for the qubits themselves offers the attractive proposition of integrating classical and quantum devices on-chip. Here, we report a CMOS dynamic random access architecture for readout of multiple quantum devices operating at millikelvin temperatures. Our circuit is divided into cells, each containing a control field-effect transistor and a quantum dot device, formed in the channel of a nanowire transistor. This set-up allows selective readout of the quantum dot and charge storage on the quantum dot gate, similar to one-transistor–one-capacitor (1T-1C) dynamic random access technology. We demonstrate dynamic readout of two cells by interfacing them with a single radio-frequency resonator. Our approach provides a path to reduce the number of input lines per qubit and allow large-scale device arrays to be addressed

    Microbiological contamination of cubicle curtains in an out-patient podiatry clinic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to potential pathogens on contaminated healthcare garments and curtains can occur through direct or indirect contact. This study aimed to identify the microorganisms present on podiatry clinic curtains and measure the contamination pre and post a standard hospital laundry process.</p> <p>Method</p> <p>Baseline swabs were taken to determine colony counts present on cubical curtains before laundering. Curtains were swabbed again immediately after, one and three weeks post laundering. Total colony counts were calculated and compared to baseline, with identification of micro-organisms.</p> <p>Results</p> <p>Total colony counts increased very slightly by 3% immediately after laundry, which was not statistically significant, and declined significantly (p = 0.0002) by 56% one-week post laundry. Three weeks post laundry colony counts had increased by 16%; although clinically relevant, this was not statistically significant. The two most frequent microorganisms present throughout were <it>Coagulase Negative Staphylococcus </it>and <it>Micrococcus </it>species. Laundering was not completely effective, as both species demonstrated no significant change following laundry.</p> <p>Conclusion</p> <p>This work suggests current laundry procedures may not be 100% effective in killing all microorganisms found on curtains, although a delayed decrease in total colony counts was evident. Cubicle curtains may act as a reservoir for microorganisms creating potential for cross contamination. This highlights the need for additional cleaning methods to decrease the risk of cross infection and the importance of maintaining good hand hygiene.</p

    Radio-frequency capacitive gate-based sensing

    Get PDF
    Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded Q factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3ΞΌe/Hz, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout

    Domestication-induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon (Salmo salar L.)

    Get PDF
    Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild

    Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    Get PDF
    Aims: Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods: Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings: The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Populationstructure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei’s gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in th

    Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr

    Get PDF
    The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers.As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50Β°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures.This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis
    • …
    corecore