32 research outputs found
Prospects of a superradiant laser based on a thermal or guided beam of Sr-88
The prospects of superradiant lasing on the 7.5 kHz wide S-P
transition in Sr is explored by using numerical simulations of two
systems based on realistic experimental numbers. One system uses the idea of
demonstrating continuous superradiance in a simple, hot atom beam with high
flux, and the other system is based on using ultra-cold atoms in a dipole
guide. We find that the hot beam system achieves lasing above a flux of atoms/s. It is capable of outputting hundreds of nW and
suppressing cavity noise by a factor of 20-30. The second order Doppler shift
causes a shift in the lasing frequency on the order of 500 Hz. For the cold
atom beam we account for decoherence and thermal effects when using a repumping
scheme for atoms confined in a dipole guide. We find that the output power is
on the order of hundreds of pW, however the second order Doppler shift can be
neglected, and cavity noise can be suppressed on the order of a factor 50-100.
Additionally we show that both systems exhibit local insensitivity to
fluctuations in atomic flux.Comment: 10 pages, 7 figure
Lasing on a narrow transition in a cold thermal strontium ensemble
Highly stable laser sources based on narrow atomic transitions provide a
promising platform for direct generation of stable and accurate optical
frequencies. Here we investigate a simple system operating in the
high-temperature regime of cold atoms. The interaction between a thermal
ensemble of Sr at mK temperatures and a medium-finesse cavity produces
strong collective coupling and facilitates high atomic coherence which causes
lasing on the dipole forbidden SP transition. We
experimentally and theoretically characterize the lasing threshold and
evolution of such a system, and investigate decoherence effects in an
unconfined ensemble. We model the system using a Tavis-Cummings model, and
characterize velocity-dependent dynamics of the atoms as well as the dependency
on the cavity-detuning.Comment: 9 pages, 7 figure
Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization
We study the non-linear interaction of a cold sample of strontium-88 atoms
coupled to a single mode of a low finesse optical cavity in the so-called bad
cavity limit and investigate the implications for applications to laser
stabilization. The atoms are probed on the weak inter-combination line \lvert
5s^{2} \, ^1 \textrm{S}_0 \rangle \,-\, \lvert 5s5p \, ^3 \textrm{P}_1 \rangle
at 689 nm in a strongly saturated regime. Our measured observables include the
atomic induced phase shift and absorption of the light field transmitted
through the cavity represented by the complex cavity transmission coefficient.
We demonstrate high signal-to-noise-ratio measurements of both quadratures -
the cavity transmitted phase and absorption - by employing FM spectroscopy
(NICE-OHMS). We also show that when FM spectroscopy is employed in connection
with a cavity locked to the probe light, observables are substantially modified
compared to the free space situation where no cavity is present. Furthermore,
the non-linear dynamics of the phase dispersion slope is experimentally
investigated and the optimal conditions for laser stabilization are
established. Our experimental results are compared to state-of-the-art cavity
QED theoretical calculations.Comment: 7 pages, 4 figure
Optical Atomic Clock Comparison through Turbulent Air
We use frequency comb-based optical two-way time-frequency transfer (O-TWTFT)
to measure the optical frequency ratio of state-of-the-art ytterbium and
strontium optical atomic clocks separated by a 1.5 km open-air link. Our
free-space measurement is compared to a simultaneous measurement acquired via a
noise-cancelled fiber link. Despite non-stationary, ps-level time-of-flight
variations in the free-space link, ratio measurements obtained from the two
links, averaged over 30.5 hours across six days, agree to ,
showing that O-TWTFT can support free-space atomic clock comparisons below the
level
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
Recommended from our members
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies