32 research outputs found

    Prospects of a superradiant laser based on a thermal or guided beam of Sr-88

    Get PDF
    The prospects of superradiant lasing on the 7.5 kHz wide 1^1S0_0-3^3P1_1 transition in 88^{88}Sr is explored by using numerical simulations of two systems based on realistic experimental numbers. One system uses the idea of demonstrating continuous superradiance in a simple, hot atom beam with high flux, and the other system is based on using ultra-cold atoms in a dipole guide. We find that the hot beam system achieves lasing above a flux of 2.5×10122.5 \times 10^{12} atoms/s. It is capable of outputting hundreds of nW and suppressing cavity noise by a factor of 20-30. The second order Doppler shift causes a shift in the lasing frequency on the order of 500 Hz. For the cold atom beam we account for decoherence and thermal effects when using a repumping scheme for atoms confined in a dipole guide. We find that the output power is on the order of hundreds of pW, however the second order Doppler shift can be neglected, and cavity noise can be suppressed on the order of a factor 50-100. Additionally we show that both systems exhibit local insensitivity to fluctuations in atomic flux.Comment: 10 pages, 7 figure

    Lasing on a narrow transition in a cold thermal strontium ensemble

    Full text link
    Highly stable laser sources based on narrow atomic transitions provide a promising platform for direct generation of stable and accurate optical frequencies. Here we investigate a simple system operating in the high-temperature regime of cold atoms. The interaction between a thermal ensemble of 88^{88}Sr at mK temperatures and a medium-finesse cavity produces strong collective coupling and facilitates high atomic coherence which causes lasing on the dipole forbidden 1^1S03_0 \leftrightarrow ^3P1_1 transition. We experimentally and theoretically characterize the lasing threshold and evolution of such a system, and investigate decoherence effects in an unconfined ensemble. We model the system using a Tavis-Cummings model, and characterize velocity-dependent dynamics of the atoms as well as the dependency on the cavity-detuning.Comment: 9 pages, 7 figure

    Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    Full text link
    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line \lvert 5s^{2} \, ^1 \textrm{S}_0 \rangle \,-\, \lvert 5s5p \, ^3 \textrm{P}_1 \rangle at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynamics of the phase dispersion slope is experimentally investigated and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.Comment: 7 pages, 4 figure

    Optical Atomic Clock Comparison through Turbulent Air

    Full text link
    We use frequency comb-based optical two-way time-frequency transfer (O-TWTFT) to measure the optical frequency ratio of state-of-the-art ytterbium and strontium optical atomic clocks separated by a 1.5 km open-air link. Our free-space measurement is compared to a simultaneous measurement acquired via a noise-cancelled fiber link. Despite non-stationary, ps-level time-of-flight variations in the free-space link, ratio measurements obtained from the two links, averaged over 30.5 hours across six days, agree to 6×10196\times10^{-19}, showing that O-TWTFT can support free-space atomic clock comparisons below the 101810^{-18} level

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    corecore