323 research outputs found

    Non-Fermi-liquid behavior due to short-range order

    Get PDF
    An exactly soluble one-dimensional model of electrons interacting with order-parameter fluctuations associated with short-range order is considered. The energy and momentum dependence of the electronic self-energy and spectral function are calculated and found to exhibit non-Fermi-liquid features similar to that seen for the two-dimensional Hubbard model: a pseudogap, shadow bands, anomalies in the self-energy, and breakdown of the quasiparticle picture. Deviations from Fermi-liquid behavior are largest close to the Fermi surface and as the correlation length increases

    Fabricating high performance conventional and inverted polymer solar cells by spray coating in air

    Get PDF
    We report bulk heterojunction organic solar cells utilising the electron-donating polymer PffBT4T-2OD blended with the fullerene acceptor PC71BM, with cells explored based on both conventional and inverted architectures. As charge-transporting layers, we utilise the hole-transporting polymer poly (2, 3-dihydrothieno-1, 4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS) in conventional device architectures, and zinc oxide (ZnO) electron-transport in inverted devices. Critically, all charge-transporting layers and the poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt- (3,3‴-di(2-octyldodecyl) 2,2'; 5',2''; 5″,2‴ -quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD): [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) active layer blend were spray coated in air. We demonstrate champion devices having a power conversion efficiency of 8.13% and 8.43% for conventional and inverted architectures respectively

    The Fabrication and Scale-Up of Organic Photovoltaic Devices via Ultrasonic Spray Coating

    Get PDF
    At the present time, most prototype organic photovoltaic (OPV) devices are fabricated via spin-coating on to relatively small substrates. While spin-coating is a powerful tool for controllable and accurate material deposition, it is a relatively slow process and not easily scalable. In order for the technology to progress into commercial manufacturing, the fabrication of devices must be demonstrated via scalable deposition techniques. This thesis investigates ultrasonic spray coating as a scalable technique for the fabrication of organic solar cells. Several hole transport and photoactive materials are spray-cast and characterised. OPV devices are fabricated and a partial scale up is investigated, resulting in spray-cast device metrics comparable to those fabricated via spin coating. This work details fabrication of the largest OPV devices yet reported in which the PEDOT:PSS hole transport layer and the photoactive layer are both spray coated. It is therefore suggested that that spray coating is a potentially viable roll-to-roll deposition technique

    High efficiency arrays of polymer solar cells fabricated by spray-coating in air

    Get PDF
    We present bulk heterojunction organic solar cells fabricated by spray-casting both the PEDOT:PSS hole-transport layer (HTL) and active PBDTTT-EFT:PC71BM layers in air. Devices were fabricated in a (6 × 6) array across a large-area substrate (25 cm2) with each pixel having an active area of 6.45 mm2. We show that the film uniformity and operational homogeneity of the devices are excellent. The champion device with spray cast active layer on spin cast PEDOT:PSS had an power conversion efficiency (PCE) of 8.75%, and the best device with spray cast active layer and PEDOT:PSS had a PCE of 8.06%. The impacts of air and light exposure of the active layer on device performance are investigated and found to be detrimental

    Polymer-based solar cells having an active area of 1.6 cm2 fabricated via spray coating

    Get PDF
    We demonstrate the fabrication of polymersolar cells in which both a PEDOT:PSS hole transport and a PCDTBT:PC71BM photoactive layer are deposited by spray-casting. Two device geometries are explored, with devices having a pixel area of 165 mm2 attaining a power conversion efficiency of 3.7%. Surface metrology indicates that the PEDOT:PSS and PCDTBT:PC71BM layers have a roughness of 2.57 nm and 1.18 nm over an area of 100 μm2. Light beam induced current mapping reveals fluctuations in current generation efficiency over length-scales of ∼2 mm, with the average photocurrent being 75% of its maximum value

    Photooxidation of dimethylsulfide (DMS) in the Canadian Arctic

    Get PDF
    Photolysis of dimethylsulfide (DMS), a secondary photochemical process mediated by chromophoric dissolved organic matter (CDOM), has previously been demonstrated to be an important loss term of DMS in the surface layer of warm seas and the Southern Ocean. The role of photolysis in regulating the DMS dynamics in northern polar seas remains, however, less clear. This study for the first time determined the apparent quantum yield (AQY) spectra of DMS photooxidation in Canadian Arctic seas covering Baffin Bay, the Mackenzie estuary and shelf, and the Canada Basin. The DMS AQY was fairly invariant at salinities < 25 but rose rapidly with further increasing salinity in an exponential manner. Salinity can therefore be used as a quantitative indicator of the DMS AQY. The DMS AQY in the ultraviolet (UV) wavelengths was linearly and positively correlated with the spectral slope coefficient (275–295 nm) of the CDOM absorption spectrum, suggesting that marine CDOM photosensitizes the degradation of DMS more efficiently than does terrestrial CDOM or that coastal waters contain higher concentrations of substrates (most likely dissolved organic matter and redox metals) that compete for DMS-oxidizing radical intermediates. High concentrations of nitrate (~ 12 μmol L&minus;1) in deep water samples boosted DMS photooxidation by 70–80%, due likely to radical chemistry of nitrate photolysis. Coupled optical-photochemical modeling, based on the obtained DMS AQY spectra, shows that UV-A (320–400 nm) accounted for 60–75% of the DMS photolysis in the sunlit surface layer and that photochemistry degraded DMS on an e-folding time from 9 to 100 d (mean: 29 d). The photooxidation term on average accounted for 21% of the DMS gross loss rate and was comparable to the atmospheric DMS ventilation rate estimated for the same geographic regions. The methodology adopted here to study the relationship between CDOM quality/origin and DMS AQYs, if applicable to other ocean areas, may bring results of global significance for DMS cycling and might have implications for probing other CDOM-driven photochemical processes

    Contrasting effects of acidification and warming on dimethylsulfide 2 concentrations during a temperate estuarine fall bloom mesocosm 3 experiment

    Get PDF
    The effects of ocean acidification and warming on the concentrations of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) were investigated during a mesocosm experiment in the Lower St. Lawrence Estuary (LSLE) in the fall of 2014. Twelve mesocosms covering a range of pHT (pH on the total hydrogen ion concentration scale) from 8.0 to 7.2, corresponding to a range of CO2 partial pressures (pCO2) from 440 to 2900 μatm, at two temperatures (in situ and C5 °C; 10 and 15 °C) were monitored during 13 days. All mesocosms were characterized by the rapid development of a diatom bloom dominated by Skeletonema costatum, followed by its decline upon the exhaustion of nitrate and silicic acid. Neither the acidification nor the warming resulted in a significant impact on the abundance of bacteria over the experiment. However, warming the water by 5 °C resulted in a significant increase in the average bacterial production (BP) in all 15 °C mesocosms as compared to 10 °C, with no detectable effect of pCO2 on BP. Variations in total DMSP (DMSPt DparticulateCdissolved DMSP) concentrations tracked the development of the bloom, although the rise in DMSPt persisted for a few days after the peaks in chlorophyll a. Average concentrations of DMSPt were not affected by acidification or warming. Initially low concentrations of DMS (< 1 nmol L-1) increased to reach peak values ranging from 30 to 130 nmol L-1 towards the end of the experiment. Increasing the pCO2 reduced the averaged DMS concentrations by 66%and 69%at 10 and 15 °C, respectively, over the duration of the experiment. On the other hand, a 5 °C warming increased DMS concentrations by an average of 240% as compared to in situ temperature, resulting in a positive offset of the adverse pCO2 impact. Significant positive correlations found between bacterial production and concentrations of DMS throughout our experiment point towards temperatureassociated enhancement of bacterial DMSP metabolism as a likely driver of the mitigating effect of warming on the negative impact of acidification on the net production of DMS in the LSLE and potentially the global ocean.Fil: Benard, Robin. Laval University; CanadáFil: Ferreyra, Gustavo Adolfo. Laval University; CanadáFil: Michael, Scarratt. Maurice Lamontagne Institute, Fisheries And Oceans; CanadáFil: Sonia, Michaud. Maurice Lamontagne Institute, Fisheries And Oceans ; CanadáFil: Michel, Starr. Maurice Lamontagne Institute, Fisheries And Oceans; CanadáFil: Alfonso, Mucci. Université Mcgill; CanadáFil: Ferreyra, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Gosselin, Michel. Institut Des Sciences de la Mer de Rimouski; CanadáFil: Tremblay, Jean-Éric. Laval University; CanadáFil: Lizotte, Martine. Laval University; CanadáFil: Yang, Gui Peng. Ocean University; Chin

    Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air

    Get PDF
    Spray-coating is a versatile coating technique that can be used to deposit functional films over large areas at speed. Here, spray-coating is used to fabricate inverted perovskite solar cell devices in which all of the solution-processible layers (PEDOT:PSS, perovskite, and PCBM) are deposited by ultrasonic spray-casting in air. Using such techniques, all-spray-cast devices having a champion power conversion efficiency (PCE) of 9.9% are fabricated. Such performance compares favorably with reference devices spin-cast under a nitrogen atmosphere that has a champion PCE of 12.8%. Losses in device efficiency are ascribed to lower surface coverage and reduced uniformity of the spray-cast perovskite layer

    Solution modification of PEDOT:PSS inks for ultrasonic spray coating

    Get PDF
    PEDOT:PSS is a high-conductivity hole-transporting polymer that is widely used in polymer and perovskite photovoltaic devices, as well as in a host of other antistatic applications. Here we show that modification of PEDOT:PSS inks using ternary solvents and by the addition of small amounts of a high molecular weight polymer make it possible to deposit highly uniform thin films via ultrasonic spray coating. Such films can be deposited using a single pass in the wet phase without the use of surfactants; a process that greatly simplifies their deposition. Using this technique we create films having thickness and roughness comparable to that of spin coated films, whilst properties such as the conductivity and stability can be improved
    • …
    corecore