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Non-Fermi-liquid behavior due to short-range order
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An exactly soluble one-dimensional model of electrons interacting with order-parameter fluctuations asso-
ciated with short-range order is considered. The energy and momentum dependence of the electronic self-
energy and spectral function are calculated and found to exhibit non-Fermi-liquid features similar to that seen
for the two-dimensional Hubbard model: a pseudogap, shadow bands, anomalies in the self-energy, and
breakdown of the quasiparticle picture. Deviations from Fermi-liquid behavior are largest close to the Fermi
surface and as the correlation length increak#8163-182006)52242-3

The question as to whether the metallic properties obn the regular Fermi surface.
high-T.  superconductots and quasi-one-dimensional The purpose of this Rapid Communication is to point out
materialé can be described by the Fermi-liquid picture thatthat there is a simple one-dimensional model which also has
works so well in conventional metals has recently receivednany of the features listed above. It is easy to study because
considerable attention. Many theoretical studies have beeih has anexactanalytic solution, found by SadovsRil.This
made of strongly correlated electron models such as the Hulsolution can be used to test different approximation schemes
bard andt-J models® The availability of high-quality photo- and methods of analytic continuation used on two-
emission datd’ has recently focused attention on the elec-dimensional models. Hopefully, the results presented here
tron spectral weight functioA(k,E) which is related to the will also provide physical insight into how short-range order
probability of observing an electron with momentlkkrand  produces non-Fermi-liquid behavior in two dimensions. The
energyE. model is directly relevant to the related issues for quasi-one-
A consistent picture is gradually emerging from studies ofdimensional materia:?*
the two-dimensional Hubbard model using quantum Monte The model consists of left- and right-moving electrons,
Carlo simulation® ! and studies using the fluctuation ex- with Fermi velocityv, interacting with a static backscatter-
change(FLEX) approximation:>~>* Some common features ing random potential (z), with Hamiltonian
are observed as the temperature is lowered, the hole doping
is decreased, or the Coulomb repulsldns increased. It has
been suggested that these changes have a common Yrigin: H ZJ dz¥’
they correspond to an increase §nthe correlation length
associated with short—rangg _ant.iferromagnetic otfler. whereo; ando.=3(o,*io,) are Pauli matrices. The up-
Thg common non_-Ferm|-I|qU|d features observed are_th%er and lower components of the spindt(z) are left-
following: (1) As ¢ increases a pseudogap develops, i.€.moying, up-spin and right-moving, down-spin electrons, re-
there |s_allsltép14pressmn'of the density of states near the Ferghectively. The other electrons are described by a similar
energy’ 7(2) As ¢ increases peaks in the electron spec-pamiltonian. (The form of the Hamiltonian is motivated by
tral function become smaller and broadéhear the Fermi considering backward scattering in the Hubbard modede

surface a breakdown of the quasiparticle picture may ocCuiandom potential has zero mean and finite range Gaussian
(3) On the Fermi surface the real part of the self-energycorelations given by

3 (k,E) can develop a positive slope at the Fermi enéfgy.

(4) The magnitude of the imaginary part of the self-energy Pk 2 e

has a local maximum at the Fermi enef§y’5) “Shadow (A(DAZ)")=grexp —|z=2'|/¢). @
bands” exist due to the incipient antiferromagnetic ortler, where ¢ is the rms fluctuation in the potential at a given

€., In Edd'téon to th? EE?E in t_he spectr:al fur|1|ct|on ali thtepoint and ¢ is the correlation lengthys defines an energy
energyt and momentu ere 1S a much smaller peak al g., 6 gng 5 length scadg=uv /. It will be seen below that

k+Q where Q= () is the wave vector associated With v, " i of the correlation length t, determines to what

antiferromagnetic ordefand the nesting vector of the Fermi extent the short-range order causes deviation from Fermi-

surface for half filling. This means the spectral function . . . ™
A(k,E) has peaks fojk| >k butE<Eg. It is estimated that tgngbé??;”?éélFor the commensurate case of a halffilled

lsucflhs_haldow tiﬁnds are c;bsefr\llatkt)_le Whenﬁéhgeh correlation An alternative interpretation of the Hamiltonian is that it
ength 1S 1arger than a coupie of fattice spaci € cor- represents electrons interacting with spin fluctuations,
responding photoemission peaks have been observed in m§(x)EA(x)/z// with susceptibility

tallic Bi,Sr,CaCyOg,, (Refs. 5 and ¥ and insulating '
Sr,CuO,Cl,.° (6) The self-energy associated with the shadow g
bands is singulal® As ¢ increases the imaginary part of the 0.0)= 8w 3
self-energy is much larger on the shadow Fermi surface than X(@.6) =0 )z (g% 2ke)*+ &2 ®

Jd
—iUFU3£+A(Z)U++A(Z)*O'_ v, (1)

0163-1829/96/54.8)/127094)/$10.00 54 R12 709 © 1996 The American Physical Society


https://core.ac.uk/display/15159764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

R12 710 ROSS H. McKENZIE AND DAVID SCARRATT 54

and ¢ then defines the strength of the coupling of the elec-
trons to the spin fluctuations. In this interpretation we are !
assuming that the energy scale associated with the spin fluc- 4 kéo== |
tuations is so much smaller than the electronic energy scale !
that the spin fluctations can be treatedstsic. Deisz, Hess,
and Seren¥ noted that for the two-dimensional Hubbard 3+ £=5¢,
model at half filling anomalies in the self-energy were al- =
ways accompanied by a spin fluctuatio-matrix j
T,.,(0,0,) that is strongly peaked near the wave vector =
g=Q and Matsubura frequenay,=0. In this regime there /
is a natural mapping onto the model considered here. At half |
filling the Fermi surface is square and has perfect nesting, so I
is somewhat “one dimensional.” The one-dimensional mo- -0 / \
mentum then corresponds to that along the) direction k= v
in the two-dimensional models? corresponds to the weight NN
of the peak inT,(q,0) within £ of Q [compare Eq(5) in 0_3 _2 0
Ref. 14. E/y
Sadovskii considered the model defined by Eds.and
(2) and found arexactsolution by summing all the diagrams FIG. 1. Shadow bands and the breakdown of the quasiparticle
generated by perturbation thedfy.The electronic Green picture near the Fermi surface. The energy dependence of the elec-
function is a continued fraction tron spectral functioi\(k,E) is shown for three different momenta
k. The correlation length associated with the short-range order is
1 equal to %y=5vg /¢ wherevg is the Fermi velocity andy is a
l/f201 ) 4 measure of the strength of the coupling of the electrons to the order-
5 parameter fluctuations. Note the presence of “shadow bands,” i.e.,
E—a,— ) small peaks irA(k,E) with E<Eg=0 andk>kg=0. The spectral
E—a,—--- function becomes significantly broader as the Fermi surface is ap-

G(k,E)=

proached. Opposite behavior occurs in a Fermi liquid: the quasipar-

ticles are better defined close to the Fermi surface. These results can

be compared to those for the two-dimensional Hubbard model at
(5) half filling (see Fig. 1 in Ref. 14 and Fig. 2 in Ref.)10

where for right-moving electrons
il

¢ Figure 2 shows how the quasiparticle picture breaks down

andc, =1 for the commensurate case of a half-filled band andas the correlation lengtlj increases. A<t increases from
for the incommensurate case=1/2 for | even and 0.2, to 100, the spectral function on the Fermi surface
¢,=(I+1)/2 for | odd. As far as we are aware this is the evolves from a single narrow peak to two broad peaks which
only nontrivial electronic model for which there is an exactare the precursors of conduction and valence bands associ-
analytic solution for the continued fraction representation ofated with long-range spin-density-wave order. For similar
a correlation function. Since the Lanczos method of exacteasons as the correlation length increases a pseudogap de-
diagonalization produces such a continued fraction represenelops in the total density of statéiSig. 2 inse}. It should be
tation of spectral functioristhis model could provide in- pointed out that the two-peak structurenist seen in FLEX
sights into trends in the continued fraction coefficients andesultd* or quantum Monte Carlo for weak coupling on large
possible termination procedur&sin the limit é—«~ a per- lattices® Whether this absence of the two peaks is a real
turbation expansion forG(k,E) is divergent but Borel property of the two-dimensiondRD) Hubbard model or a
summable® We evaluated the continued fractidd) nu-  result of the FLEX approximation or not being able to go to
merically using the modified Lentz's methédAll the re-  low enough temperatures is not clear.
sults shown here are for the incommensurate case. Qualita- The self-energy has anomalous features similar to those
tively similar results are obtained for the commensurate casdéound for the 2D Hubbard model at half filling. At the

Generally we find that as the correlation length increasefermi energy the real part of the self-energy has a positive
and the Fermi surface is approached the properties of thgope (Fig. 3). The magnitude of the imaginary part of the
self-energy and spectral function deviate significantly fromself-energy, in a quasiparticle picture, is related to the qua-
the quasiparticle picture of Fermi-liquid theory. Many of the siparticle lifetime and develops a maximum at the Fermi
anomalous features we see are similar to those found for thenergy (Fig. 3. In contrast, in a Fermi liquid R& has a
two-dimensional Hubbard model at half filling treated in the negative slope anilmX| has a minimum(which goes to
fluctuation-exchange approximatithFigure 1 shows how zero as the temperature goes to zeabthe Fermi energy.
the spectral functiorA(k,E) broadens significantly as the The opposite behavior observed here means that although for
electron momentum approaches the Fermi momentum. Thisur model there is a pole in the spectral functioEatO it is
happens even for correlation lengths of the order ofot possible to define a quasiparticle solution there.
&o=ve /. This means that for strong coupling, i.é.of the The self-energy on the Fermi surfag€0,E) develops a
order of the bandwidth, the correlation lendtlcan be of the singularity at the Fermi energE=0 as the correlation
order of a lattice constant. Shadow bands are present anength increases. Figure 4 shows thdk,E) develops simi-
become larger a§ increases antk| decreases. lar singular behavior ned~ —kvg, which corresponds to

a=(—1)'vek+sgr(k)
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FIG. 2. Breakdown of the quasiparticle picture with increasing  FIG. 4. Singular behavior of the shadow band self-energy.
correlation length. The energy dependence of the spectral functionway from the Fermi surface the self-energy ndarkvg has
at the Fermi momentum is shown for several correlation lengthsFermi-liquid properties. In contrast, near- — kv, which is asso-
The spectral function broadens considerably and evolves into twejated with the shadow band, the self-energy becomes increasingly
bands as the correlation length increases. These results can be cosingular as the correlation length increases. Intersections of the Re
pared to those for the 2D Hubbard model at half filing as thes, curves with the dot-dashed straight line correspond to poles of
temperature is lowere@ee Fig. 1 in Ref. 14 The inset shows how the spectral function. Hence, the shadow band is only associated
the pseudogap in the total density of states opens up as the corngith a pole for very large correlation lengths.
lation length increases. Note that although §er &, the pseudogap
is rather weak deviations from Fermi-liquid behavior still occur.  Only for very large correlation lengths does the shadow band

feature correspond to a pole of the spectral function, i.e., an

the position of the shadow band. In general, the magnitude afnergyE, which satisfie€€, — kvg—Re (k,E,)=0. Conse-
the imaginary part of the self-energwhich is related to the quently, the shadow band peak is not a replica of the regular
scattering rate is much larger and more singular near quasiparticle peak. These results can be compared to those of
E~—kvg than E~+kvg. The scattering rate for the Chubukov?® for a two-dimensional spin-fluctuation model.
shadow band increases with as is observed for the 2D Figure 5 shows the spectral function calculated for this
Hubbard model as the doping or temperature is decrédsedmodel using second-order perturbation theory. This corre-
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FIG. 3. Anomalous behavior of the self-energy. The real part of FIG. 5. Second-order perturbation theory is unreliable near the
the self-energy at the Fermi momentum,3R6,E), has a positive  Fermi surface. The spectral function is calculated for the same pa-
slope at the Fermi energieE 0). This means that a quasiparticle rameter values as in Fig. INote the vertical scale is three times
weight cannot be defined. As the correlation length increases krger here. The discrepancy with the exact results is large for
maximum atE=0 develops in the magnitude of the imaginary part |k|<1/¢, and becomes larger asincreases. The inset shows the
of the self-energy at the Fermi momentdm(0,E)|. (Compare total density of states for the same parameter values as in Fig. 2.
Fig. 2 in Ref. 14) (Note the vertical scale is two times larger hgre.
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sponds to termination of the continued fractionatl. Such  singularities in the self-energy and only corresponds to poles
a perturbative form for the Green’s function has been used iin the spectral function for very large correlation lengtta.
calculations concerning the role of order-parameter fluctuaPerturbation theory gives unreliable results in the non-Fermi-
tions in quasi-one-dimensional materidfddowever, the dis- liquid regime.

crepancy with the exact results shown in Fig. 1 shows this is Note added in proofRecent angle-resolved photoemis-
quite unreliable for [E[<¢ when [k—ke|<¢/ve and  sjon measuremenisi. Ding et al, Nature(London 382, 51
§>ve /. In particular perturbation theory greatly underesti- (1996: A. G. Loeser et al, Science 273 325 (1996)]
mates the width of the spectral function. The inset of Fig. Shave measured a pseudogap in the normal state of
shows how perturbation theory gives unreliable results forBiZSrZCaCL;zOBH. The observed opening up of the

the total density of states #> &. _ pseudogap with decreasing doping and decreasing tempera-
In- conclusion, the simple model considered here hag,re are qualitatively similar to how the pseudogap consid-

many features similar to those seen for the two-dimensionaleq here opens up with increasing correlation lerigty. 2
Hubbard model and provides insight into how short-rangqnseb_

order can produce non-Fermi-liquid behavior. Of particular

interest are the following(a) The ratio of the correlation

length to&y=uv /¢ determines deviations from Fermi-liquid This work was stimulated by discussions with J. R. Schri-
behavior.(b) Non-Fermi-liquid behavior occurs even when effer. We thank H. Castella, J. Deisz, D. Hess, M. Steiner,
the correlation length is sufficiently short that there is only aand J. Voit for very helpful discussions. This work was sup-

weak pseudogafic) The “shadow band” is associated with ported by the Australian Research Council.
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