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An exactly soluble one-dimensional model of electrons interacting with order-parameter fluctuations asso-
ciated with short-range order is considered. The energy and momentum dependence of the electronic self-
energy and spectral function are calculated and found to exhibit non-Fermi-liquid features similar to that seen
for the two-dimensional Hubbard model: a pseudogap, shadow bands, anomalies in the self-energy, and
breakdown of the quasiparticle picture. Deviations from Fermi-liquid behavior are largest close to the Fermi
surface and as the correlation length increases.@S0163-1829~96!52242-3#

The question as to whether the metallic properties of
high-Tc superconductors1 and quasi-one-dimensional
materials2 can be described by the Fermi-liquid picture that
works so well in conventional metals has recently received
considerable attention. Many theoretical studies have been
made of strongly correlated electron models such as the Hub-
bard andt-J models.3 The availability of high-quality photo-
emission data4–7 has recently focused attention on the elec-
tron spectral weight functionA(k,E) which is related to the
probability of observing an electron with momentumk and
energyE.

A consistent picture is gradually emerging from studies of
the two-dimensional Hubbard model using quantum Monte
Carlo simulations8–11 and studies using the fluctuation ex-
change~FLEX! approximation.12–15Some common features
are observed as the temperature is lowered, the hole doping
is decreased, or the Coulomb repulsionU is increased. It has
been suggested that these changes have a common origin:11

they correspond to an increase inj, the correlation length
associated with short-range antiferromagnetic order.16

The common non-Fermi-liquid features observed are the
following: ~1! As j increases a pseudogap develops, i.e.,
there is a suppression of the density of states near the Fermi
energy.8–11,13,14~2! As j increases peaks in the electron spec-
tral function become smaller and broader.14 Near the Fermi
surface a breakdown of the quasiparticle picture may occur.
~3! On the Fermi surface the real part of the self-energy
S(k,E) can develop a positive slope at the Fermi energy.14

~4! The magnitude of the imaginary part of the self-energy
has a local maximum at the Fermi energy.14 ~5! ‘‘Shadow
bands’’ exist due to the incipient antiferromagnetic order,17

i.e., in addition to the peak in the spectral function at the
energyE and momentumk there is a much smaller peak at
k1Q whereQ5(p,p) is the wave vector associated with
antiferromagnetic order~and the nesting vector of the Fermi
surface for half filling!. This means the spectral function
A(k,E) has peaks foruku.kF butE,EF . It is estimated that
such shadow bands are observable when the correlation
length is larger than a couple of lattice spacings.10 The cor-
responding photoemission peaks have been observed in me-
tallic Bi2Sr2CaCu2O81x ~Refs. 5 and 7! and insulating
Sr2CuO2Cl2.

6 ~6! The self-energy associated with the shadow
bands is singular.18 As j increases the imaginary part of the
self-energy is much larger on the shadow Fermi surface than

on the regular Fermi surface.15

The purpose of this Rapid Communication is to point out
that there is a simple one-dimensional model which also has
many of the features listed above. It is easy to study because
it has anexactanalytic solution, found by Sadovskii.19 This
solution can be used to test different approximation schemes
and methods of analytic continuation used on two-
dimensional models. Hopefully, the results presented here
will also provide physical insight into how short-range order
produces non-Fermi-liquid behavior in two dimensions. The
model is directly relevant to the related issues for quasi-one-
dimensional materials.20,21

The model consists of left- and right-moving electrons,
with Fermi velocityvF , interacting with a static backscatter-
ing random potentialD(z), with Hamiltonian

H5E dzC†F2 ivFs3

]

]z
1D~z!s11D~z!*s2GC, ~1!

wheres3 ands6[ 1
2(s16 is2) are Pauli matrices. The up-

per and lower components of the spinorC(z) are left-
moving, up-spin and right-moving, down-spin electrons, re-
spectively. The other electrons are described by a similar
Hamiltonian.~The form of the Hamiltonian is motivated by
considering backward scattering in the Hubbard model.! The
random potential has zero mean and finite range Gaussian
correlations given by

^D~z!D~z8!* &5c2exp~2uz2z8u/j!. ~2!

wherec is the rms fluctuation in the potential at a given
point andj is the correlation length.c defines an energy
scale and a length scalej0[vF /c. It will be seen below that
the ratio of the correlation length toj0 determines to what
extent the short-range order causes deviation from Fermi-
liquid behavior. For the commensurate case of a half-filled
bandD(z) is real.

An alternative interpretation of the Hamiltonian is that it
represents electrons interacting with spin fluctuations,
S(x)[D(x)/c, with susceptibility

x~v,q!5d~v!(
6

j21

~q62kF!21j22 ~3!
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andc then defines the strength of the coupling of the elec-
trons to the spin fluctuations. In this interpretation we are
assuming that the energy scale associated with the spin fluc-
tuations is so much smaller than the electronic energy scale
that the spin fluctations can be treated asstatic.Deisz, Hess,
and Serene14 noted that for the two-dimensional Hubbard
model at half filling anomalies in the self-energy were al-
ways accompanied by a spin fluctuationT-matrix
Tss(q,vn) that is strongly peaked near the wave vector
q5Q and Matsubura frequencyvn50. In this regime there
is a natural mapping onto the model considered here. At half
filling the Fermi surface is square and has perfect nesting, so
is somewhat ‘‘one dimensional.’’ The one-dimensional mo-
mentum then corresponds to that along the (p,p) direction
in the two-dimensional model.c2 corresponds to the weight
of the peak inTss(q,0) within j21 of Q @compare Eq.~5! in
Ref. 14#.

Sadovskii considered the model defined by Eqs.~1! and
~2! and found anexactsolution by summing all the diagrams
generated by perturbation theory.19 The electronic Green
function is a continued fraction

G~k,E!5
1

E2a02
c2c1

E2a12
c2c2

E2a22•••

, ~4!

where for right-moving electrons

al5~21! lvFk1sgn~k!
i l

j
~5!

andcl5 l for the commensurate case of a half-filled band and
for the incommensurate casecl5 l /2 for l even and
cl5( l11)/2 for l odd. As far as we are aware this is the
only nontrivial electronic model for which there is an exact
analytic solution for the continued fraction representation of
a correlation function. Since the Lanczos method of exact
diagonalization produces such a continued fraction represen-
tation of spectral functions3 this model could provide in-
sights into trends in the continued fraction coefficients and
possible termination procedures.22 In the limit j→` a per-
turbation expansion forG(k,E) is divergent but Borel
summable.20 We evaluated the continued fraction~4! nu-
merically using the modified Lentz’s method.23 All the re-
sults shown here are for the incommensurate case. Qualita-
tively similar results are obtained for the commensurate case.

Generally we find that as the correlation length increases
and the Fermi surface is approached the properties of the
self-energy and spectral function deviate significantly from
the quasiparticle picture of Fermi-liquid theory. Many of the
anomalous features we see are similar to those found for the
two-dimensional Hubbard model at half filling treated in the
fluctuation-exchange approximation.14 Figure 1 shows how
the spectral functionA(k,E) broadens significantly as the
electron momentum approaches the Fermi momentum. This
happens even for correlation lengths of the order of
j05vF /c. This means that for strong coupling, i.e.,c of the
order of the bandwidth, the correlation lengthj can be of the
order of a lattice constant. Shadow bands are present and
become larger asj increases anduku decreases.

Figure 2 shows how the quasiparticle picture breaks down
as the correlation lengthj increases. Asj increases from
0.2j0 to 100j0 the spectral function on the Fermi surface
evolves from a single narrow peak to two broad peaks which
are the precursors of conduction and valence bands associ-
ated with long-range spin-density-wave order. For similar
reasons as the correlation length increases a pseudogap de-
velops in the total density of states~Fig. 2 inset!. It should be
pointed out that the two-peak structure isnot seen in FLEX
results14 or quantum Monte Carlo for weak coupling on large
lattices.8 Whether this absence of the two peaks is a real
property of the two-dimensional~2D! Hubbard model or a
result of the FLEX approximation or not being able to go to
low enough temperatures is not clear.

The self-energy has anomalous features similar to those
found for the 2D Hubbard model at half filling.14 At the
Fermi energy the real part of the self-energy has a positive
slope ~Fig. 3!. The magnitude of the imaginary part of the
self-energy, in a quasiparticle picture, is related to the qua-
siparticle lifetime and develops a maximum at the Fermi
energy ~Fig. 3!. In contrast, in a Fermi liquid ReS has a
negative slope anduImSu has a minimum~which goes to
zero as the temperature goes to zero! at the Fermi energy.
The opposite behavior observed here means that although for
our model there is a pole in the spectral function atE50 it is
not possible to define a quasiparticle solution there.

The self-energy on the Fermi surfaceS(0,E) develops a
singularity at the Fermi energyE50 as the correlation
length increases. Figure 4 shows thatS(k,E) develops simi-
lar singular behavior nearE;2kvF , which corresponds to

FIG. 1. Shadow bands and the breakdown of the quasiparticle
picture near the Fermi surface. The energy dependence of the elec-
tron spectral functionA(k,E) is shown for three different momenta
k. The correlation length associated with the short-range order is
equal to 5j055vF /c wherevF is the Fermi velocity andc is a
measure of the strength of the coupling of the electrons to the order-
parameter fluctuations. Note the presence of ‘‘shadow bands,’’ i.e.,
small peaks inA(k,E) with E,EF50 andk.kF50. The spectral
function becomes significantly broader as the Fermi surface is ap-
proached. Opposite behavior occurs in a Fermi liquid: the quasipar-
ticles are better defined close to the Fermi surface. These results can
be compared to those for the two-dimensional Hubbard model at
half filling ~see Fig. 1 in Ref. 14 and Fig. 2 in Ref. 10!.
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the position of the shadow band. In general, the magnitude of
the imaginary part of the self-energy~which is related to the
scattering rate! is much larger and more singular near
E;2kvF than E;1kvF . The scattering rate for the
shadow band increases withj, as is observed for the 2D
Hubbard model as the doping or temperature is decreased.15

Only for very large correlation lengths does the shadow band
feature correspond to a pole of the spectral function, i.e., an
energyEk which satisfiesEk2kvF2ReS(k,Ek)50. Conse-
quently, the shadow band peak is not a replica of the regular
quasiparticle peak. These results can be compared to those of
Chubukov18 for a two-dimensional spin-fluctuation model.

Figure 5 shows the spectral function calculated for this
model using second-order perturbation theory. This corre-

FIG. 2. Breakdown of the quasiparticle picture with increasing
correlation length. The energy dependence of the spectral function
at the Fermi momentum is shown for several correlation lengths.
The spectral function broadens considerably and evolves into two
bands as the correlation length increases. These results can be com-
pared to those for the 2D Hubbard model at half filling as the
temperature is lowered~see Fig. 1 in Ref. 14!. The inset shows how
the pseudogap in the total density of states opens up as the corre-
lation length increases. Note that although forj;j0 the pseudogap
is rather weak deviations from Fermi-liquid behavior still occur.

FIG. 3. Anomalous behavior of the self-energy. The real part of
the self-energy at the Fermi momentum, ReS(0,E), has a positive
slope at the Fermi energy (E50). This means that a quasiparticle
weight cannot be defined. As the correlation length increases a
maximum atE50 develops in the magnitude of the imaginary part
of the self-energy at the Fermi momentumuImS(0,E)u. ~Compare
Fig. 2 in Ref. 14.!

FIG. 4. Singular behavior of the shadow band self-energy.
Away from the Fermi surface the self-energy nearE;kvF has
Fermi-liquid properties. In contrast, nearE;2kvF , which is asso-
ciated with the shadow band, the self-energy becomes increasingly
singular as the correlation length increases. Intersections of the Re
S curves with the dot-dashed straight line correspond to poles of
the spectral function. Hence, the shadow band is only associated
with a pole for very large correlation lengths.

FIG. 5. Second-order perturbation theory is unreliable near the
Fermi surface. The spectral function is calculated for the same pa-
rameter values as in Fig. 1.~Note the vertical scale is three times
larger here.! The discrepancy with the exact results is large for
uku,1/j0 and becomes larger asj increases. The inset shows the
total density of states for the same parameter values as in Fig. 2.
~Note the vertical scale is two times larger here.!
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sponds to termination of the continued fraction atl51. Such
a perturbative form for the Green’s function has been used in
calculations concerning the role of order-parameter fluctua-
tions in quasi-one-dimensional materials.24 However, the dis-
crepancy with the exact results shown in Fig. 1 shows this is
quite unreliable for uEu,c when uk2kFu,c/vF and
j.vF /c. In particular perturbation theory greatly underesti-
mates the width of the spectral function. The inset of Fig. 5
shows how perturbation theory gives unreliable results for
the total density of states ifj.j0.

In conclusion, the simple model considered here has
many features similar to those seen for the two-dimensional
Hubbard model and provides insight into how short-range
order can produce non-Fermi-liquid behavior. Of particular
interest are the following:~a! The ratio of the correlation
length toj05vF /c determines deviations from Fermi-liquid
behavior.~b! Non-Fermi-liquid behavior occurs even when
the correlation length is sufficiently short that there is only a
weak pseudogap.~c! The ‘‘shadow band’’ is associated with

singularities in the self-energy and only corresponds to poles
in the spectral function for very large correlation lengths.~d!
Perturbation theory gives unreliable results in the non-Fermi-
liquid regime.

Note added in proof.Recent angle-resolved photoemis-
sion measurements@H. Ding et al., Nature~London! 382, 51
~1996!; A. G. Loeser et al., Science 273, 325 ~1996!#
have measured a pseudogap in the normal state of
Bi2Sr2CaCu2O81x. The observed opening up of the
pseudogap with decreasing doping and decreasing tempera-
ture are qualitatively similar to how the pseudogap consid-
ered here opens up with increasing correlation length~Fig. 2
inset!.
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