211 research outputs found

    HIPPARCOS Astrometric Orbit and Evolutionary Status of HR 6046

    Full text link
    The previously known, 6-yr spectroscopic binary HR 6046 has been speculated in the past to contain a compact object as the secondary. A recent study has re-determined the orbit with great accuracy, and shown that the companion is an evolved but otherwise normal star of nearly identical mass as the primary, which is also a giant. The binary motion was detected by the Hipparcos mission but was not properly accounted for in the published astrometric solution. Here we use the Hipparcos intermediate data in combination with the spectroscopic results to revise that solution and establish the orbital inclination angle for the first time, and with it the absolute masses M(A) = 1.38 [-0.03,+0.09] M(Sun) and M(B) = 1.36 [-0.02,+0.07] M(Sun). Aided by other constraints, we investigate the evolutionary status and confirm that the primary star is approaching the tip of the red-giant branch, while the secondary is beginning its first ascent.Comment: To appear in The Astronomical Journal. 8 pages including tables and figures, in emulateapj forma

    Ordinal judgments of depth in monocularly- and stereoscopically-viewed photographs of complex natural scenes

    Get PDF
    This study investigated the contribution of stereoscopic depth cues to the reliability of ordinal depth judgments in complex natural scenes. Participants viewed photographs of cluttered natural scenes, either monocularly or stereoscopically. On each trial, they judged which of two indicated points in the scene was closer in depth. We assessed the reliability of these judgments over repeated trials, and how well they correlated with the actual disparities of the points between the left and right eyes' views. The reliability of judgments increased as their depth separation increased, was higher when the points were on separate objects, and deteriorated for point pairs that were more widely separated in the image plane. Stereoscopic viewing improved sensitivity to depth for points on the same surface, but not for points on separate objects. Stereoscopic viewing thus provides depth information that is complementary to that available from monocular occlusion cues

    Luminance contrast provides metric depth information

    Get PDF
    The perception of depth from retinal images depends on information from multiple visual cues. One potential depth cue is the statistical relationship between luminance and distance; darker points in a local region of an image tend to be farther away than brighter points. We establish that this statistical relationship acts as a quantitative cue to depth. We show that luminance variations affect depth in naturalistic scenes containing multiple cues to depth. This occurred when the correlation between variations of luminance and depth was manipulated within an object, but not between objects. This is consistent with the local nature of the statistical relationship in natural scenes. We also showed that perceived depth increases as contrast is increased, but only when the depth signalled by luminance and binocular disparity are consistent. Our results show that the negative correlation between luminance and distance, as found under diffuse lighting, provides a depth cue that is combined with depth from binocular disparity, in a way that is consistent with the simultaneous estimation of surface depth and reflectance variations. Adopting more complex lighting models such as ambient occlusion in computer rendering will thus contribute to the accuracy as well as the aesthetic appearance of three-dimensional graphics

    In-House Digital Workflow for the Management of Acute Mandible Fractures

    Get PDF
    Computer-aided design and additive manufacturing are revolutionizing oral and maxillofacial surgery. Current methods use virtual surgical planning sessions and custom plate milling via third-party vendors, which is costly and time-consuming, negating the effectiveness in acute facial trauma. This technical note describes a state-of-the-art in-house expedited digital workflow for computer-aided virtual fracture reduction, 3-dimensional printing, and preoperative reconstruction plate adaptation for the management of an acute mandible fracture. This process uses the computed tomographic scan a patient receives in the emergency department or clinic. The DICOM (Digital Imaging and Communications in Medicine) data are transferred into US Food and Drug Administration–approved software, in which the fracture is segmented and virtually reduced based on condylar position, midline symmetries, and occlusion if present. The reduced mandible is then printed, which serves as a template for preoperative reconstruction plate adaptation. This method facilitates a virtually reduced fractured mandible, 3-dimensionally printed model, and ideally adapted plates ready for sterilization before surgery within 2 hours after DICOM upload

    Supplementary material from "Luminance contrast provides metric depth information"

    Get PDF
    The perception of depth from retinal images depends on information from multiple visual cues. One potential depth cue is the statistical relationship between luminance and distance; darker points in a local region of an image tend to be farther away than brighter points. We establish that this statistical relationship acts as a quantitative cue to depth. We show that luminance variations affect depth in naturalistic scenes containing multiple cues to depth. This occurred when the correlation between variations of luminance and depth was manipulated within an object, but not between objects. This is consistent with the local nature of the statistical relationship in natural scenes. We also showed that perceived depth increases as contrast is increased, but only when the depth signalled by luminance and binocular disparity are consistent. Our results show that the negative correlation between luminance and distance, as found under diffuse lighting, provides a depth cue that is combined with depth from binocular disparity, in a way that is consistent with the simultaneous estimation of surface depth and reflectance variations. Adopting more complex lighting models such as ambient occlusion in computer rendering will thus contribute to the accuracy as well as the aesthetic appearance of three-dimensional graphics

    Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    Get PDF
    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures

    Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods.

    Get PDF
    BACKGROUND: Renal ischemia reperfusion injury (R-IRI) can cause acute kidney injury (AKI) and chronic kidney disease (CKD), resulting in significant morbidity and mortality. To understand the underlying mechanisms, reproducible small-animal models of AKI and CKD are needed. We describe how innovative technologies for measuring kidney function noninvasively in small rodents allow successful refinement of the R-IRI models, and offer the unique opportunity to monitor longitudinally in individual animals the transition from AKI to CKD. METHODS: Male BALB/c mice underwent bilateral renal pedicle clamping (AKI) or unilateral renal pedicle clamping with delayed contralateral nephrectomy (CKD) under isoflurane anesthetic. Transdermal GFR monitoring and multispectral optoacoustic tomography (MSOT) in combination with statistical analysis were used to identify and standardize variables within these models. RESULTS: Pre-clamping anesthetic time was one of the most important predictors of AKI severity after R-IRI. Standardizing pre-clamping time resulted in a more predictably severe AKI model. In the CKD model, MSOT demonstrated initial improvement in renal function, followed by significant progressive reduction in function between weeks 2 and 4. Performing contralateral nephrectomy on day 14 enabled the development of CKD with minimal mortality. CONCLUSIONS: Noninvasive monitoring of global and individual renal function after R-IRI is feasible and reproducible. These techniques can facilitate refinement of kidney injury models and enable the degree of injury seen in preclinical models to be translated to those seen in the clinical setting. Thus, future therapies can be tested in a clinically relevant, noninvasive manner

    New Precision Orbits of Bright Double-Lined Spectroscopic Binaries. I: RR Lyncis, 12 Bootis, and HR 6169

    Full text link
    Radial velocities from the 2.1 m telescope at McDonald Observatory supplemented with radial velocities from the coude' feed telescope at KPNO provide new precise orbits for the double-lined spectroscopic binaries RR Lyn (A3/A8/A6), 12 Boo (F8IV), and HR 6169 (A2V). We derive orbital dimensions and minimum masses with accuracies of 0.06 to 0.9 %. The three systems, which have V magnitudes of 5.54, 4.83, and 6.42, respectively, are all sufficiently bright that they are easily within the grasp of modern optical interferometers and so afford the prospect, when our spectroscopic observations are complemented by interferometric observations, of fully-determined orbits, precise masses, and distances. In the case of RR Lyn, which is also a detached eclipsing binary with a well-determined orbital inclination, we are able to determine the semimajor axis of the relative orbit, a = 29.32 +/- 0.04 Rsun, primary and secondary radii of 2.57 +/- 0.02 Rsun and 1.59 +/- 0.03 Rsun, respectively; and primary and secondary masses of 1.927 +/- 0.008 Msun and 1.507 +/- 0.004 Msun, respectively. Comparison of our new systemic velocity determination, gamma = -12.03 +/- 0.04 km/s, with an earlier one, gamma = -11.61 +/- 0.30 km/s, shows no evidence of any change in the systemic velocity in the 40 years separating the two measurements, a null result that neither confirms nor contradicts the presence of the low-mass third component proposed by Khaliullin & Khaliullina (2002). Our spectroscopic orbit of 12 Boo is more precise that that of Boden et al. (2005), but confirms their results about this system. Our analysis of HR 6169 has produced a major improvement in its orbital elements. The minimum masses of the primary and secondary are 2.20 +/- 0.01 and 1.64 +/- 0.02 Msun, respectively.Comment: To appear in the May A
    • …
    corecore